Discrete Flow Mapping - A Mesh Based Simulation Tool for Mid-to-High Frequency Vibro-Acoustic Excitation of Complex Automotive Structures

Event
8th International Styrian Noise, Vibration & Harshness Congress: The European Automotive Noise Conference
Authors Abstract
Content
Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task, especially in the mid to high frequency regime, even with the computational resources available today. Standard modelling tools for complex vehicle parts include finite and boundary element methods (FEM and BEM), as well as Multi-Body Simulations (MBS). These methods are, however, robust only in the low frequency regime. In particular, FEM is not scalable to higher frequencies due to the prohibitive increase in model size. We have recently developed a new method called Discrete Flow Mapping (DFM), which extends existing high frequency methods, such as Statistical Energy Analysis or the so-called Dynamical Energy Analysis (DEA), to work on meshed structures. It provides for the first time detailed spatial information about the vibrational energy of a whole built-up structure of arbitrary complexity in this frequency range. The response of small-scale features and coupling coefficients between sub-components are obtained through local FEM models integrated in the global DFM treatment. The computational cost of DFM is largely frequency independent making it possible to get results from the mid-to-high frequency regime. This tool will be important when considering the vibrational response of a structure as a whole moving away from modelling vibrations only in sub-parts of the mechanical body.
Meta TagsDetails
DOI
https://doi.org/10.4271/2014-01-2079
Pages
7
Citation
Tanner, G., Chappell, D., Löchel, D., and Søndergaard, N., "Discrete Flow Mapping - A Mesh Based Simulation Tool for Mid-to-High Frequency Vibro-Acoustic Excitation of Complex Automotive Structures," SAE Int. J. Passeng. Cars - Mech. Syst. 7(3):1198-1204, 2014, https://doi.org/10.4271/2014-01-2079.
Additional Details
Publisher
Published
Jun 30, 2014
Product Code
2014-01-2079
Content Type
Journal Article
Language
English