Neutron Tomography of Exhaust Gas Recirculation Cooler Deposits

2014-01-0628

04/01/2014

Event
SAE 2014 World Congress & Exhibition
Authors Abstract
Content
Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOx emissions standards. Exhaust gas laden with particulate matter flows through the EGR cooler which causes deposits to form through thermophoresis and condensation. The low thermal conductivity of the resulting deposit reduces the effectiveness of the EGR system. In order to better understand this phenomenon, industry-provided coolers were characterized using neutron tomography. Neutrons are strongly attenuated by hydrogen but only weakly by metals which allows for non-destructive imaging of the deposit through the metal heat exchanger. Multiple 2-D projections of cooler sections were acquired by rotating the sample around the axis of symmetry with the spatial resolution of each image equal to ∼70 μm. A 3-D tomographic set was then reconstructed, from which slices through the cooler sections were extracted across different planes. High concentrations of hydrocarbon is necessary for imaging deposits and only those coolers which exhibited large organic fractions or hydrated sulfate phases were successfully characterized. Cooler plugging and the effect of internal cooler geometry on the deposit thickness and spallation were characterized. Results are discussed in relation to future performance gains expected to occur with new spallation neutron sources that will provide energy selectivity and higher spatial resolutions.
Meta TagsDetails
DOI
https://doi.org/10.4271/2014-01-0628
Pages
8
Citation
Lance, M., Bilheux, H., Bilheux, J., Voisin, S. et al., "Neutron Tomography of Exhaust Gas Recirculation Cooler Deposits," SAE Technical Paper 2014-01-0628, 2014, https://doi.org/10.4271/2014-01-0628.
Additional Details
Publisher
Published
Apr 1, 2014
Product Code
2014-01-0628
Content Type
Technical Paper
Language
English