A Novel Design and Validation for Turbine Housing Inlet Flange

2013-01-2645

10/14/2013

Event
SAE/KSAE 2013 International Powertrains, Fuels & Lubricants Meeting
Authors Abstract
Content
Turbocharger is widely used to boost engine due to emissions, fuel and cost reasons. As one of the hot components, it is subjected to severe temperature and thermal load history. Under these conditions, the material suffers hostile thermal mechanical fatigue (TMF) damage especially for the turbine housing side which absorbs hot exhaust gas directly to drive the turbine wheel. The cracking of turbine housing occurs frequently in the inlet flange location due to its very complex geometry and consequently complicated temperature and stress distribution, seriously affecting the normal operation of the engine. In the electric power industry, one of the most challenging tasks is to ensure the guaranteed lifetime. This paper proposes a novel turbine housing inlet flange design to control this type of failure effectively and improve the component lifetime and reliability. The novel design extends the inlet flange and includes the heat dissipation function as well. It benefits to improve heat transfer condition and reduces thermal stress. Finite element analysis (FEA) as numerical method and laboratory fatigue testing as experimental method have been introduced and applied here for the traditional inlet flange design and the novel design to see the improvement. This novel design in electric power applications is identified successful after validation by both methodologies.
Meta TagsDetails
DOI
https://doi.org/10.4271/2013-01-2645
Pages
6
Citation
Guo, H., Du, X., and Wang, D., "A Novel Design and Validation for Turbine Housing Inlet Flange," SAE Technical Paper 2013-01-2645, 2013, https://doi.org/10.4271/2013-01-2645.
Additional Details
Publisher
Published
Oct 14, 2013
Product Code
2013-01-2645
Content Type
Technical Paper
Language
English