Experimental and Numerical Study of Water Spray Injection at Engine-Relevant Conditions

2013-01-0250

04/08/2013

Event
SAE 2013 World Congress & Exhibition
Authors Abstract
Content
Water spray characterization of a multi-hole injector under pressures and temperatures representative of engine-relevant conditions was investigated for naturally aspirated and boosted engine conditions. Experiments were conducted in an optically accessible pressure vessel using a high-speed Schlieren imaging to visualize the transient water spray. The experimental conditions included a range of injection pressures of 34, 68, and 102 bar and ambient temperatures of 30 - 200°C, which includes flash-boiling and non-flash-boiling conditions. Transient spray tip penetration and spray angle were characterized via image processing of raw Schlieren images using Matlab code. The CONVERGE CFD software was used to simulate the water spray obtained experimentally in the vessel. CFD parameters were tuned and validated against the experimental results of spray profile and spray tip penetration measured in the combustion vessel (CV). With the validated CFD model, water spray injection into an engine in-cylinder configuration was simulated. The CV experimental results showed that collapsing spray plumes were observed for higher temperature of the charge, showing reduced spray tip penetration. The engine CFD results showed that water injection at 90° BTDC showed better vaporization and decreased the formation of liquid wall film on piston surface, cylinder head, and cylinder wall compared with those for 60° BTDC water injection.
Meta TagsDetails
DOI
https://doi.org/10.4271/2013-01-0250
Pages
17
Citation
Bhagat, M., Cung, K., Johnson, J., Lee, S. et al., "Experimental and Numerical Study of Water Spray Injection at Engine-Relevant Conditions," SAE Technical Paper 2013-01-0250, 2013, https://doi.org/10.4271/2013-01-0250.
Additional Details
Publisher
Published
Apr 8, 2013
Product Code
2013-01-0250
Content Type
Technical Paper
Language
English