Simulation of Sloshing and Ballooning in Fuel Tanks for High Speed Impacts

2006-01-0314

04/03/2006

Event
SAE 2006 World Congress & Exhibition
Authors Abstract
Content
A fuel tank is one of the most critical components in a vehicle crash because it may link to passenger safety. The effect of fuel pressure on the tank boundary in a dynamic impact condition is constantly being studied both numerically and experimentally. In hard braking conditions with a partially filled tank, the fuel slams on to the front wall of the tank. During high-speed impact on the other hand, there is significant bulging of the fuel tank if it is nearly full, while vortices and cavities may form with partial filling. In these cases, the internal fuel and vapor pressure distribution can change; thus, affecting the distribution of stress on the tank. The objective of this paper is to study these phenomena using the currently available ALE (Arbitrary Lagrangian Eulerian) methodology and thus improve fuel tank design by a direct application of CAE. To help understand the responses of the fuel, vapor and tank under high speed impact condition, contour plots, section analysis, as well as three dimensional deformation modes of fuel and tank were utilized to analyze the simulation results.
Meta TagsDetails
DOI
https://doi.org/10.4271/2006-01-0314
Pages
13
Citation
Tang, B., Guha, S., Tyan, T., Doong, J. et al., "Simulation of Sloshing and Ballooning in Fuel Tanks for High Speed Impacts," SAE Technical Paper 2006-01-0314, 2006, https://doi.org/10.4271/2006-01-0314.
Additional Details
Publisher
Published
Apr 3, 2006
Product Code
2006-01-0314
Content Type
Technical Paper
Language
English