Hydrodynamic Lubrication Applied to Bearings with Oscillating Motion in Internal Combustion Engines

2005-01-4004

11/22/2005

Event
SAE Brasil 2005 Congress and Exhibit
Authors Abstract
Content
This work has for purpose to develop a mathematical model for the hydrodynamic lubrication of bearings with oscillating motion. The motivation lies in the tribology of internal combustion engines, specifically the lubrication problem at the bearing existing between the connecting rod and the piston pin. This kind of bearing does not perform a complete rotation, thus characterizing a new class of oscillating motion bearings. For the analysis of lubrication, a viscous fluid flow with negligible inertia inside a narrow gap formed by two surfaces is considered. The surfaces can be considered flat and are inclined to each other. The inner surface is fixed whereas the outer one performs an oscillating motion which generates a combined Couette-Poiseuille flow inside the gap. Using the same assumptions as in classical Reynolds' lubrication equation, the simplified mass and momentum conservation equations are analytically solved to determine the velocity and pressure distributions. It is shown that at the limit when the oscillation frequency tends to zero, these distributions give Reynolds' results back. The forces on the inner surface are obtained and shown in graphical form.
Meta TagsDetails
DOI
https://doi.org/10.4271/2005-01-4004
Pages
9
Citation
Neto, I., Cavalca, K., and Bannwart, A., "Hydrodynamic Lubrication Applied to Bearings with Oscillating Motion in Internal Combustion Engines," SAE Technical Paper 2005-01-4004, 2005, https://doi.org/10.4271/2005-01-4004.
Additional Details
Publisher
Published
Nov 22, 2005
Product Code
2005-01-4004
Content Type
Technical Paper
Language
English