Turbulence Modelling in CFD Simulation of ICE Intake Flows: The Discharge Coefficient Prediction

2002-01-1118

03/04/2002

Event
SAE 2002 World Congress & Exhibition
Authors Abstract
Content
The paper is focused on the influence of the eddy viscosity turbulence models (EVM) in CFD three-dimensional simulations of steady turbulent engine intake flows in order to assess their reliability in predicting the discharge coefficient. Results have been analyzed by means of the comparison with experimental measurements at the steady flow bench. High Reynolds linear and non-linear and RNG k-ε models have been used for simulation, revealing the strong influence of both the constitutive relation and the ε-equation formulation on the obtained results, while limits in the applicability of more sophisticated near-wall approaches are briefly discussed in the paper.
Due to the extreme complexity of typical ICE flows and geometries, the analysis of the behavior of EVM turbulence models has been subsequently applied to a test-case available in literature, i.e. a high-Reynolds compressible flow over a inclined backward facing step (BFS). Different high-Reynolds and low-Reynolds linear and quadratic k-ε models, linear and quadratic RNG k-ε models and linear and quadratic two-layer models have been used for simulation. The predicted mean velocity profiles at different locations along the duct have been compared versus experiments available in literature.
Meta TagsDetails
DOI
https://doi.org/10.4271/2002-01-1118
Pages
20
Citation
Bianchi, G., Cantore, G., and Fontanesi, S., "Turbulence Modelling in CFD Simulation of ICE Intake Flows: The Discharge Coefficient Prediction," SAE Technical Paper 2002-01-1118, 2002, https://doi.org/10.4271/2002-01-1118.
Additional Details
Publisher
Published
Mar 4, 2002
Product Code
2002-01-1118
Content Type
Technical Paper
Language
English