Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 710

Recently Published

Browse All
This AIR is limited to the testing of an extra-high strength copper alloy and benchmark conductors utilizing the test protocol of AS6324. All samples are 19 strand unilay conductors per AS29606 at 24 or 26 AWG, either nickel or silver coated. At 24 AWG, extra-high strength copper alloy is compared to high strength copper alloy conductors. At 26 AWG, extra-high strength copper alloy is compared to high strength copper alloy and ultrahigh strength copper alloy conductors.
AE-8D Wire and Cable Committee
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Standard covers cold drawn and annealed seamless low-carbon steel pressure tubing intended for use as hydraulic lines and in other applications requiring tubing of a quality suitable for flaring and bending. In an effort to standardize within a global marketplace and ensuring that companies can remain competitive in an international market it is the intent to convert to metric tube sizes which will: Lead to one global system Guide users to preferred system Reduce complexity Eliminate inventory duplications
Metallic Tubing Committee
This information report covers all known aircraft with respect to deicing operations, especially with regard to OEM pressure and temperature limitations on the airframe. It provides data for airlines/operators on compliance with OEM limits and confirms that OEM limits are not exceeded during deicing operations.
G-12M Methods Committee
This SAE Recommended Practice is derived from the FMVSS 105 vehicle test and applies to two-axle multipurpose passenger vehicles, trucks, and buses with a GVWR above 4540 kg (10000 pounds) equipped with hydraulic service brakes. There are two main test sequences: the Development Test Sequence for generic test conditions when not all information is available or when an assessment of brake output at different inputs is required, and the FMVSS Test Sequence when vehicle parameters for brake pressure as a function of brake pedal input force and vehicle-specific loading and brake distribution are available. The test sequences are derived from the Federal Motor Vehicle Safety Standard 105 (and 121 for optional sections) as single-ended inertia-dynamometer test procedures when using the appropriate brake hardware and test parameters. This recommended practice provides Original Equipment Manufacturers (OEMs), brake and component manufacturers, and aftermarket suppliers with results related to
Truck and Bus Hydraulic Brake Committee
This SAE Standard defines the method for deriving and verifying the peening intensity exerted onto a part surface during shot peening or other surface enhancement processes.
Surface Enhancement Committee
The following schematic diagrams reflect various methods of illustrating automotive transmission arrangements. These have been developed to facilitate a clear understanding of the functional interrelations of the gearing, clutches, hydrodynamic drive unit, and other transmission components. Two variations of transmission diagrams are used: in neutral (clutches not applied) and in gear. For illustrative purposes, some typical transmissions are shown.
Automatic Transmission and Transaxle Committee
This SAE AIR covers Forced Air technology including: reference material, equipment, safety, operation, and methodology. It is intended to provide pressure and temperature (temps pages 26 & 31) information and minimum safety guidelines regarding use of equipment to remove frozen contaminants related to: i) Forced air ii) Forced air/fluid iii) Deicing fluid
G-12M Methods Committee
SAE J1978-2 specifies a complementary set of functions to be provided by an OBD-II scan tool. These functions provide complete, efficient access to all regulated OBD services on any vehicle that is compliant with SAE J1979-2 and SAE J1979-3. The content of this document is intended to satisfy the requirements of an OBD-II scan tool as required by current U.S. OBD regulations. This document specifies: A means of establishing communications between an OBD-equipped vehicle and an OBD-II scan tool. A set of diagnostic services to be provided by an OBD-II scan tool in order to exercise the services defined in SAE J1979-2 and SAE J1979-3. In addition, SAE J1978-1 covers first generation protocol functionality defined in SAE J1979 plus automatic protocol determination for all SAE J1979/J1979-2/J1979-3 application content. The presentation of the SAE J1978 document family, where SAE J1978-2 covers second generation protocol functionality defined in SAE J1979-2 and SAE J1979-3, and SAE J1978-1
Vehicle E E System Diagnostic Standards Committee
This specification covers a corrosion-resistant steel in the form of investment castings, solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
The rapid growth of the civil aviation industry has placed significant pressure on limited airport runway resources, leading to increased taxiing delays and excessive fuel consumption. These challenges are exacerbated by the constant rise in air traffic, which necessitates more efficient management of airport operations. To mitigate these issues, this study proposes a flexible management approach that categorizes busy periods based on airport traffic density, taking into account the fluctuating load demand at different times of the day. This approach ensures that resource allocation aligns with actual traffic conditions, optimizing operational efficiency. Additionally, leveraging the existing dynamic pushback control framework, this research develops a cosine-based dynamic pushback control model, which incorporates parking stand waiting penalties. This model aims to reduce departure costs by dynamically adjusting the pushback rate according to congestion levels. To further optimize the
Wu, YingziLian, GuanLuo, WeizhenLi, WenyongZhao, YeqiZhang, Hao
Large-spacing truck platooning offers a balance between operational safety and fuel savings. To enhance its performance in windy environments, this study designs a control system integrating both longitudinal and lateral motions. The longitudinal control module regulates the inter-vehicle spacing within a desired range while generating a fuel-optimal torque profile by minimizing unnecessary decelerations and accelerations. The lateral control module ensures lateral stability and maintains alignment between the trucks to achieve the expected fuel savings. A two-truck platoon is simulated with a 3-sec time gap under varying wind conditions, using experimental data from the on-road cooperative truck platooning trials conducted in Canada. The control system effectively remains spacing errors within the preset safety buffer and limits lateral offsets to 0.07 m, ensuring safe and stable platooning in windy environments. Additionally, the smoother speed profiles and reduced lateral offsets
Jiang, LuoShahbakhti, Mahdi
With the rapid development of metro network operation, metro passenger flow congestion propagation occurs frequently. Accurately modeling passenger flow congestion propagation is crucial for alleviating metro passenger flow congestion and formulating corresponding control strategies. Traditional modeling methods struggle to effectively capture the complex spatiotemporal dependency relationships in metro networks. To improve the accuracy of congestion propagation modeling, this paper proposes a Dynamic Spatiotemporal Graph Convolutional Network (DSTGCN). The model integrates node attributes and temporal encoding through a dynamic adjacency matrix generation module, uses multi-head attention mechanisms to adaptively learn the time-varying propagation intensity between nodes, and combines static topology to construct dynamic adjacency matrices. A multi-scale spatiotemporal feature extraction module is designed, employing temporal convolution and spatial attention mechanisms to mine
Chen, BeijiaWang, JunhangShao, Jiayu
In order to understand the changes of freeway traffic flow risk,drone videos was used to obtain vehicles trajectories on the freeway, analyzing the spatio-temporal interactions between vehicles, the propagation patterns of traffic conflicts, and the pattern of risk changes. Classify traffic flow states based on three-phase traffic theory. Starting from the frequency and severity of conflicts, the risk characteristics under different traffic flow states was investigated. The fuzzy C-means clustering algorithm was used to determine the risk level. Results indicate that the vehicles in the first lane on the left were more sensitive to the speed changes of the leading vehicles. The deceleration wave is highly consistent with the propagation path of traffic conflicts. When the backward propagation of deceleration waves, the collision risk also propagates backward simultaneously. In the process of transitioning from free flow to synchronized flow, high-risk state accounts for the highest
Ma, XiaolongLiu, JianbeiSun, ZhuWang, Jing
Real-time traffic congestion prediction is essential for proactive traffic management, as it enhances the responsiveness of traffic systems, including route guidance, control, and enforcement. However, the heavy reliance on extensive historical data presents a significant challenge for real-time model updates. To overcome this limitation, this study proposes an advanced online learning framework that integrates a multi-head attention mechanism with LSTM-based ensemble learning. This approach incorporates traffic congestion factors as input features and employs average delay per kilometer as the predictive output. The experimental findings indicate that: 1) the proposed approach successfully enables real-time traffic congestion forecasting, and 2) it demonstrates strong adaptability in dynamic traffic environments.
Fu, ChuanyunLiu, JiamingLu, ZhaoyouWumaierjiang, AyinigeerLiu, HuahuaBai, Wei
Because regular rear wings on race cars cannot meet all aerodynamic needs, this study tests a new active rear wing on a formula racing car. First, the paper explains the design and key features of the new wing, showing how it helps improve airflow and downforce. Then, the study builds a model of the racing car in Carsim software and adds the new wing to test its performance. After that, simulations compare the new wing to traditional ones, focusing on speed, grip, and handling. The results prove that the new wing makes the car faster and more stable in corners. This means the active rear wing is a better solution than fixed wings, and it could be useful for future race car designs.
Yu, Wanbo
Objective:Methods:Results:Conclusion:
Sun, KeWan, QianLiu, QianqianLi, Qiuling
This specification and its supplementary slash specifications establish the requirements for electrodeposition of metals by brush plating.
AMS B Finishes Processes and Fluids Committee