Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 711

Recently Published

Browse All
The acquisition of sensor data is essential for the operation and validation of the SAE vehicle. This system must be capable of converting analog data into digital form and communicating with the sensors. To this end, printed circuit boards (PCBs) were designed and manufactured, incorporating electromagnetic interference mitigation solutions through various analog filters, in order to ensure the integrity of the acquired signals. Data conversion and communication were implemented using a microprocessor from the STM32 family, with efficient transmission of the processed data carried out via the CAN protocol.
David, Mateus PadilhaAndrade, Fernanda Matsumoto LimaSousa Oliveira, IvanCarvalho, Luis Pedro FeioGuerreiro, Joel FilipeRibeiro, Rodrigo EustaquioSantos Neto, Pedro José
In the context of emerging technology developed for advanced air mobility concept, its maintenance protocols are not yet mature and existing aviation maintenance systems may not support electric-vertical take-off and landing (e-VTOL) needs. Thus, the operation of e-VTOL aircraft during its deployment stage necessitates the need for qualitative maintenance support. The main purpose of this study is to develop the basic structural principles of the projected new maintenance, repair, and overhaul (MRO) organization for e-VTOL air vehicles, which will support airworthiness through comprehensive maintenance approaches. Thus, the operation of e-VTOL aircraft during its deployment stage necessitates the need for qualitative maintenance support. The importance of the study is to offer standard procedures based on management and maintenance strategies, application of predictive and prescriptive maintenance tools, which pose a significant contribution to ensuring safety, reliability, and cost
Imanov, TapdigBozdereli, Arzu
2
Siqueira, Caio Henrique MoreiraÁzara, Luiz Eduardo MartinsRibeiro, José Vitor PuttiniSoares, Gabriel FariaSilva, Fábio MoreiraAlvarez, Carlos Eduardo Castilla
Transmission systems play a crucial role in vehicle performance, efficiency, and adaptability. Conventional transmissions, such as Continuously Variable Transmissions (CVTs) and Manual Transmissions (MTs), each offer distinct advantages—CVTs provide smooth gear transitions and optimized fuel efficiency, whereas MTs deliver superior driver control, mechanical simplicity, durability, and high torque efficiency. This study explores the feasibility of integrating a dual-mode CVT-MT transmission into passenger vehicles to enhance driving dynamics and fuel efficiency. The proposed system uses the first gear to improve initial acceleration, a critical factor in urban driving, stop-and-go traffic, and high-load scenarios where CVTs struggle with torque delivery. After launch, the drivetrain transitions into CVT mode, leveraging its continuously adjustable gear ratios for efficiency and smooth power delivery. A simulation model based on MATLAB / Simulink will analyze the performance of the
Baldi, EduardoLopes, Matheus Carlos Sinobio Elias DRodrigues, Gustavo Simão
The advancement of electric mobility has driven the development of technologies aimed at enabling smart, secure, and interoperable electric vehicle (EV) charging. In this context, this paper presents a technical and market analysis of the Vehicle-to-Grid (V2G) and Plug & Charge (PnC) functionalities, focusing on their architectures, applicable technical standards, communication protocols, levels of commercial maturity, and emerging applications. The discussion begins with a review of the main national and international standards relevant to charging infrastructure, with emphasis on IEC 61851, IEC 62196, and ISO 15118 series, which address the technical requirements of equipment, connectors, and vehicle-to-grid communication. The operation of V2G is then discussed as a technology that enables bidirectional energy flow between the EV and the power grid, with a focus on topological configurations, pilot project applications, and regulatory and economic challenges that currently limit its
Marques, Felipe L. R.Arioli, Vitor T.Bernardo, RodrigoNakandakare, Cleber A.Pizzini, Luiz R.Nicola, Eduardo V.
22xx
Pasa, Bruno RobertoSilveira, Juliano PereiraFagundez, Jean Lucca SouzaLanzanova, Thompson Diórdinis MetzkaMartins, Mario Eduardo SantosSalau, Nina Paula Gonçalves
This study presents a methodology for characterizing the spray of an internal combustion engine (ICE) fuel injector, focusing on direct injection (DI) systems. It addresses the knowledge gap in academic research regarding injector spray patterns by conducting experimental tests and numerical simulations. Using a Bosch HDEV 1.1 pressure swirl injector and EXXSOL D60 test fluid, spray characteristics were captured with a high-speed camera under varying injection pressures and ambient/counterpressure conditions. These experimental data were used to calibrate a numerical model for simulating spray dynamics within the combustion chamber. The research examines the impact of parameters such as breakup length and breakup size constant on spray behavior, revealing that the breakup size constant significantly affects spray penetration. The study successfully developed and validated a methodology for characterizing and modeling fuel injector sprays, providing a valuable reference for optimizing
Paula Araújo, Gabriel HelenoAssis, Marcelo Suman SilvaMalaquias, Augusto Cesar TeixeiraCarvalho Torres Filho, MarcosBaeta, José Guilherme Coelho
In vehicle development, occupant-centered design is crucial to ensuring customer satisfaction. Key factors such as visibility, access, interior roominess, driver ergonomics, interior storage and trunk space directly impact the daily experience of vehicle occupants. While automakers rely on engineering metrics to guide architectural decisions, however in some cases doesn’t exist a clear correlation between these quantitative parameters and the subjective satisfaction of end users. This study develops a methodology which addresses that gap by proposing the creation of quantitative satisfaction curves for critical engineering metrics, providing a robust tool to support decision-making during the early stages of vehicle design. Through a combination of clinics, research, and statistical analysis, this project outlines a step-by-step process for developing (dis)satisfaction curves, offering a clearer understanding of how dimensions like headroom, glove box volume, and A-pillar obscuration
Santos, Alex CardosoSilva, GustavoBenevente, RodrigoPadua Silva, AntonioLourenço, Sergio RicardoAndrade, Cecilia NavasSobral, Piero
Powertrain architecture is being reshaped by the electrification of heavy-duty military vehicles using hydrogen fuel cell technology, particularly in transmission systems. Unlike conventional internal combustion engines, hydrogen fuel cell electric vehicles (FCEVs) typically use single-speed or direct-drive configurations due to the high torque of electric motors. This paper examines the impact of hydrogen electrification on military vehicle transmissions, focusing on armored multi-role models such as the VBMT-LSR, Guarani, and Leopard 1A5 of the Brazilian Army. The study compares traditional gearboxes with alternative solutions optimized for fuel cells, analyzing the trade-offs in efficiency, durability, and operational adaptability. Additionally, it explores adaptations required for hydrogen internal combustion engines (H2-ICEs), considering their distinct characteristics and demands. The study employs a three-step validation methodology combining computational simulations, technical
Biêng, Ethan Lê QuangPontes, Guilherme AyrosoConrado, Guilherme Barreto RollembergLopes, Elias Dias RossiRodrigues, Gustavo Simão
This study presents the design, construction, and experimental validation of a test bench for characterizing elastomer-based torsion suspensions in light vehicle applications. The system replaces conventional spring-damper assemblies with viscoelastic elements that simultaneously absorb and dissipate road-induced vibrations. We developed a scaled prototype instrumented with an Arduino-based data acquisition system and analyzed results using Octave®. The experimental protocol comprised: (1) tribological tests to identify optimal friction pairs through coefficient of friction (μ) and wear rate measurements, and (2) dynamometric evaluations of torque transmission capacity, power output, and efficiency across gear ratios (2.03-6.34). Results indicate that a steel-steel friction pair under a normal force of 250-300 N achieves optimal performance, delivering an output power of 1706 W (84.8% efficiency) and a torque of 30.25 Nm. Comparative analysis shows this configuration reduces wear rates
Silva, Diego BrunoGrandinetti, Francisco JoséCastro, Thais SantosDias, Érica XimenesSouza Soares, de Álvaro ManoelMartins, Marcelo SampaioReis de Faria Neto, dos Antônio
The continuous pursuit of operational excellence in the tire manufacturing industry necessitates structured approaches to minimize production defects, improve resource utilization, and enhance product reliability. This study presents a comprehensive case study focused on the implementation of Lean Manufacturing tools within a high-volume production facility specialized in truck and bus radial (TBR) tires. The production line under investigation exhibited recurring defects on the sidewall region of the cured tires, referred to as defect F1, stemming primarily from condensation phenomena and steam management inefficiencies during the curing process. A detailed root cause analysis was conducted through structured brainstorming sessions, Ishikawa diagrams, and the 5 Whys method, revealing multiple converging causes including excessive internal pressure, improper drainage angles, degraded sealing interfaces, and inadequate vapor shielding. In response, a corrective action plan was deployed
Filho, William Manjud MalufYoshimura, Sofia LucasMarques, Ana SungSousa, Julia ZanardoSiqueira, GonçaloAlves, Marcelo Augusto LealFerreira, Wallace Gusmão
This paper analyzes the potential of combining natural fibers with nanomaterials to develop advanced composites for automotive sector applications, providing a sustainable alternative to parts traditionally produced with metallic materials. The metallic alloy in the automotive industry is widely used in vehicle manufacturing, but faces significant challenges, such as high production costs, high weight, susceptibility to corrosion, and rigorous recycling processes. Natural fibers stand out for favorable mechanical properties, low cost, low weight, and eco-friendly material, making promising alternatives to metals and synthetic fibers. The combination of natural fibers and nanomaterials creates composites with improved mechanical and thermal, reducing any limitations inherent to natural fibers. Therefore, composites combined, called hybrid, have a high potential for use in various automotive components, such as in structural and non-structural applications. This study also analyzes the
Corrêa, KarythaCabral, GabrielSantiago, MarceloVeloso, VerônicaChaves, Matheus
This study presents a comparative Life Cycle Assessment (LCA) of urban buses powered by Diesel S10 with three fuel blends: B7 (7% biodiesel), B15 (15% biodiesel), and B100 (100% biodiesel). Employing a well-to-wheel approach, the analysis covers the extraction, production, distribution, and use of the fuels, as well as vehicle manufacturing and maintenance. The environmental impacts were quantified using the CML-IA and ReCiPe 2016 (Midpoint and Endpoint) methods. Results indicate that B100 significantly reduces Global Warming Potential, yet exhibits higher impacts in eutrophication, abiotic depletion, and ecotoxicity. Sensitivity analysis regarding vehicle occupancy revealed greater variability for B100. In conclusion, the optimal fuel choice depends on the prioritization of specific impact categories, providing insights for sustainable transportation policies.
Cavaliero, Carla Kazue NakaoBarboza, Franciele AlvesSeabra, Joaquim Eugênio AbelFerreira, Marcela CravoCarpoviki, Renan SiqueiraCruz, Robson Ferreira
Driven by technological advances in artificial intelligence, sensors, connectivity and sustainable mobility, autonomous buses are a reality in many contexts where their application is viable and efficient. The potential of the technology is a clear theme and has been widely discussed over the last two decades, due to various factors such as reducing accidents, increasing operating cost efficiency, improving the efficiency of public transport, reducing environmental impact and offering mobility solutions for increasingly congested urban areas. Due to the implementation of the General Safety Regulation (GSR II) in the European Union, with the aim of reducing traffic accidents and paving the way for fully autonomous vehicles, autonomous vehicles are getting closer to becoming a viable reality on the streets and highways of developed countries [1]. In order to guarantee the necessary safety in autonomous systems, data reliability is fundamental. To this end, it is essential to implement
Gameiro, JoãoPirocchi, AmandaMatias, BrendaPaterlini, BrunoSouza, Kerylli deAngelone, LucaGama, Ulisses
Agrícola Cana Caiana and Grunner have developed an innovative vehicle for sugarcane harvesting, focused on reducing fuel consumption. This optimization is vital and relevant for similar operations in the largest global producers: Brazil (724 mi t - 37%), India (439 mi t - 22%), China (103 mi t - 5.3%), Thailand (92 mi t - 4.7%), Pakistan (88 mi t - 4.5%), Mexico (55 mi t - 2.8%), Colombia (35 mi t - 1.8%), Indonesia (32 mi t - 1.6%), USA (31 mi t - 1.6%), and Australia (28 mi t - 1.4%). In Brazil, São Paulo leads with 383.4 mi t (54.1% of the 23/24 harvest), followed by Minas Gerais (81.3 mi t). This innovative agricultural machinery, a result of the owners' experience, has already sold over a thousand units, proving its impact on the efficiency of the sugar-alcohol sector. The Belei family's expertise generated this solution that optimizes resources and increases harvesting productivity, with the potential to advance sustainability and profitability globally, driving agricultural
Ferreira, Antonio Eustáquio Sirolli
3
Horiuchi, Lucas NaoKerche, Eduardo FischerGonçalves, Everaldo CarlosPolkowski, Rodrigo
22
Assis, Marcelo Suman SilvaPaula Araújo, Gabriel Heleno deBaeta, José Guilherme CoelhoAbreu, Pedro Blaso Barbosa deFilho, Fernando Antonio Rodrigues
This study presents three methods for obtaining the latency of an indirect injection Electro-Injector as a function of the applied voltage. This parameter is relevant for the linearization of the injected mass in order to model fuel mass delivery on modern ECUs. For this purpose, the authors built a test bench, with the intent of running analysis on the results of tests of mass differential between injections, circulating current, and mechanical vibration. The authors gathered data over the iterative experiments and correlated the mass differential, vibration data and current measurements. The authors observed that with a reduction of supply voltage at the injector’s pins, a greater injector dead time made itself present displaying a need for a compensation of opening time in function of voltage since the injector’s needle takes a longer amount of time in partially open positions. Modern ECU manufacturers broadly use the data obtained by this type of iterative experiment to accurately
Juliatti, Rafael MotterOliveira, Julia Mathias deMorais Hanriot, Sérgio deSilveira, Hairton Júnior Jose daMoreira, Vinicius Guerra
The transition to renewable fuels is critical to reduce greenhouse gas emissions and achieve carbon neutrality in the transportation sector. Ethanol has emerged as a promising biofuel for compression ignition (CI) engines due to its renewability and low-carbon profile. However, its low cetane number, high latent heat of vaporization, poor lubricity, and corrosive properties severely limit its auto-ignition capability and durable operation under conventional CI conditions. Building upon previous work using a Rapid Compression Machine (RCM) to assess ignition improvers for ethanol, this study explores a broader range of fuel formulations to enhance ethanol-based combustion. A total of nine blends were prepared, consisting predominantly of hydrated ethanol (50-80% by volume), combined with 5-25% biodiesel and up to 5% of a commercial ignition improvers. The biodiesel component acted both as a co-solvent and as a combustion stabilizer, particularly under cold-start conditions. Tests were
Bacic, Denise AmatoSánchez, Fernando ZegarraTicona, Epifanio MamaniPradelle, Renata Nohra ChaarSantos Coelho, Lucas dosMota, Crislane Almeida Pereira daPradelle, Florian
This research aimed to develop a method for identifying and prioritizing the feasibility of automation in administrative processes, using as an example an application in a Shared Services Center (SSC) of a Brazilian multinational in the auto parts sector. The study considers the use of various automation technologies, including Robotic Process Automation (RPA), Decision Rules, Extract, Transform, Load (ETL), Analytics, and Workflow, with the goal of optimizing operational efficiency and reducing costs. The methodological approach adopted is based on Design Science Research (DSR), allowing for the creation and validation of an innovative artifact that, through a questionnaire applied to each process, assists in identifying the administrative processes most suitable for automation. Using the questionnaire responses, an indicator is calculated related to the percentage of automation feasibility (Paut) of the processes. The results obtained demonstrate an artifact that makes the
Junior, Osvaldo Vicente JardimCampos, Renato deFranco, Bruno Chaves
The integration of sensory stimuli in Virtual Reality remains a challenge in the automotive industry, especially regarding consumer perception and immersive experience. This study aims to examine the applications of virtual reality in the automotive industry, analyzing how the integration of sensory stimuli can impact consumer perception, the technological challenges involved, and the opportunities for innovation in the sector, contributing to the advancement of immersive automotive experiences. We adopted a literature-based analytical approach, involving the review of VR technologies applied to product design, consumer interaction, and sensory integration, with a focus on tactile, visual, and olfactory stimuli. The analysis considered technological, cultural, and market factors, ensuring a comprehensive understanding of the current state and challenges of VR adoption in the automotive context. As a result, we identified key benefits of VR in improving design, testing, training, and
Ramos, CatharinaThasla, YasmimRodrigues, DanielaAlfonso, MarcioLeite, RodrigoRibeiro, EuláliaWinkler, Ingrid
X42eq
Assis, GuilhermeSánchez, Fernando ZegarraPradelle, Renata Nohra ChaarBraga, Sergio LealTicona, Epifanio MamaniSouza Junior, JorgePradelle, Florian
Nanosilica-treated fabrics have a variety of properties, such as durability, water resistance, and specific surface characteristics. Due to that, many applications of those components are highlighted in literature. Some examples include waterproofing and water repellency, stain resistance, flame retardancy, improved durability, UV protection, improved comfort, antimicrobial properties, and textile coatings for electronics. These applications demonstrate how nanosilica-based treatments can enhance the performance of fabrics, making them more suitable for various specialized uses. In this work, a technical fabric with a mesh opening of 45 μm and an open area of 29.6% was surface treated. The treatments were performed by the dip-coating method using poly(dimethylsiloxane) (PDMS) and nanosilica at different concentrations. Optical microscopy (OM) images of the fabrics’ surface and water contact angle (WCA) measurements were carried out before and after the fabrics’ treatments. The results
Kerche, Eduardo FischerLeal, DéboraRomano, PauloOliveira, ViníciusPolkowski, Rodrigo
Since the emergence of the first tanks in World War I, tracked military vehicles have driven the development of increasingly sophisticated control systems, keeping pace with the evolution of technologies and combat tactics. This study aims to develop a longitudinal speed control system for tracked military vehicles using a cascade framework. To this end, a dynamic model based on the bicycle model—commonly employed for wheeled vehicles—has been appropriately adapted to represent the dynamics of tracked vehicles. In the first stage, a Model-based Predictive Controller defines the required traction force to be produced by the track; subsequently, a PID controller determines the necessary torque on the drive pulley to achieve the desired force. Simulations performed in MATLAB, considering a straight trajectory and speeds of up to 20 km/h, demonstrate the effectiveness of the proposed control system, yielding satisfactory results in the regulation of longitudinal speed.
Forte, Marcelo AlejandroPenha, Luiz Roberto Martins SilvaBraga, Matheus Rodrigues PereiraRodrigues, Gustavo SimãoLopes, Elias Dias Rossi