Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 711

Recently Published

Browse All
Rail cranes are often subjected to sudden gusts of wind during the course of their work. In the event that a crane lacks adequate windproof capabilities, its movement along the track may have a significant impact on its own functionality and the safety of the surrounding equipment. Consequently, the prediction of the capacity of the rail crane to impede sudden gusts of wind, and the rational configuration of its windproof apparatus, is paramount to the crane’s ability to withstand wind. This paper conducts a systematic theoretical analysis of the gust resistance of rail crane with different windproof device configurations. It considers the movement of the wheels under wind influence and the windproof characteristics of other devices along the track direction. A theoretical formula is established to predict the gust resistance of rail crane, enabling the estimation of their maximum windproof capacity and providing a foundation for the selection and configuration of windproof devices
Zhang, GuoWang, GongxianHu, ZhihuiSun, Hui
Cross-line operation is a key direction for the integrated development of multi-level rail transit systems in urban agglomerations. Optimizing train operation under cross-line conditions is essential for improving the overall efficiency and service quality of rail networks. This paper addresses the joint problem of suburban railway cross-line operation and express–local train coordination. This paper develops a train scheduling optimization framework that jointly selects service patterns and departure schedules, with the objective of reducing overall costs, including passenger travel time and operating expenses. To solve the model efficiently, an extended Adaptive Large Neighborhood Search (ALNS) algorithm is developed. The proposed approach provides a practical framework for timetable planning in complex cross-line rail systems and contributes to enhancing integrated transit operations.
Zhu, JingyiGuo, XinPan, Jianju
Corrosion of prestressed tendons endangers the safety of bridges, but until now, there has been no effective method to solve the problem of detecting corrosion damage in prestressed tendons of concrete beams. To address this, a magnetic flux leakage detection experimental apparatus for corrosion damage in prestressed tendons based on the principle of magnetic flux leakage inspection has been developed. Using this apparatus, magnetic flux leakage tests were conducted on prestressed tendons after electrochemical corrosion, and the results were compared with simulation analysis to conduct a comparative study. In the experiments, the influence of corrosion severity, corrosion width, and the effect of stirrups on the characteristics of the magnetic flux leakage signals were studied. Magnetic signal feature values were extracted, and a quantification neural network model for corrosion damage was established, which is used to quantify the degree of corrosion damage in prestressed tendons. The
Wang, PengGao, MinDong, LeiZhu, Junliang
The effective measurement and verification of dimensional stability indicators for large size and highly stable structures in service environments is the key to the development of high-precision spacecraft technology. Spatial carrier speckle interferometry technology has been widely used for high-precision measurements in recent years due to its advantages of fast speed, high accuracy, and simple operation. However, the existing technical research only focuses on the measurement under normal temperature and pressure environments, and there is little research on the application under complex operating conditions in space. There is currently no relevant research on the impact of system ambient vibration and noise on measurement stability disturbances. In response to the above issues, a high-precision deformation measurement system suitable for complex environments of high and low temperatures in a vacuum was designed based on spatial carrier measurement technology. A system measurement
Sun, ZijieTang, XiaojunChen, DongkangkangYang, DeyuYu, WentaoLi, XiaqiaoXin, Liang
In order to reduce traffic accidents and losses in long downhill sections of expressways, giving drivers reasonable prevention and control means of information induction can improve the safety of long downhill sections. The location of the accompanying information service of the driver's vehicle terminal and the rationality of the intervention information are worth studying. This study takes a high-speed long downhill road as an example, divides the risk level of the long downhill road based on the road safety risk index model, and verifies it with the help of driving behavior data. Secondly, three coverage schemes of sensing devices are designed according to the results of risk classification, and the HMI interface of accompanying information service is designed according to the different coverage degrees of sensing devices. Finally, a driving simulation experiment was carried out based on the driving simulator, and the speed control level, psychological comfort level, operational
Wang, YuejiaWeng, WenzhongLuan, SenDai, Yibo
Focusing on drivers in Hong Kong, this paper analyzes how social media usage contributes to inattentive driving and the associated safety consequences. Data were collected using a questionnaire-based survey and analyzed through chi-square tests, Fisher’s exact tests, and Cramér’s V effect size calculations to examine the relationships between demographic and driving-related factors—including gender, age group, education level, driving experience, and self-rated driving skills—and the level of high-risk perception. The findings reveal that gender, age, experience, and Self-assessed driving ability significantly influence drivers’ perception of high-risk situations. Furthermore, significant interaction effects were observed among these variables, indicating that they do not operate in isolation but rather interact to shape risk perception. For example, middle-aged and older female drivers with higher education levels and extensive driving experience demonstrated a heightened perception
Dong, JinhaiYe, HaochengCui, ZihengChen, Yang
According to a problem of the vibration and noise suppression of an engineering vehicle cab, a dynamical model of the engine-frame-cab system was established to describe the vibration transmission path. The method of calculation of the vibratory power flow, which is transmitted from the vibration source engine to the cab through the frame and isolators, was deduced. And then an optimization strategy for the frame structure and the corresponding analysis algorithm process were proposed based on the objective function of power flow. The method proposed was validated through an application to a practical example, which would have practical value in the field of vehicle vibration reductions and optimization design of frame structures.
Wang, QiangHuo, RuiGuan, YanfengZhang, Daokun
The rapid development of civil aviation industry makes it difficult for traditional flight scheduling methods to cope with the increasingly complex air transport demand. In this study, an AI-based civil aviation transportation scheduling optimisation system is designed, integrating a novel deep reinforcement learning framework with a validated multimodal fusion algorithm (MMFA) to address spatiotemporal dependencies in aviation data to construct the core architecture of the system. Measurement results show that the system effectively reduces the average flight delay time by 58.1%, improves the slot utilisation rate by 21.3%, increases the flight punctuality rate to 93.7%, and shortens the response time to emergencies by 62.5%. The high performance and significant economic benefits demonstrated by the system in the real environment provide a feasible solution for the intelligent upgrading of civil aviation transport.
Li, Mohan
Accurate forecasting of port container throughput is essential for strategic port planning and infrastructure development. This paper systematically employed the GM (1,1) grey prediction model, quadratic exponential smoothing model and ARIMA model to forecast container throughput at Tianjin Port. Subsequently, a combined model was established through weighted integration of these individual predictors. The results demonstrated that the combined model achieved higher predictive accuracy and lower mean error compared to individual model, thereby providing valuable insights for Tianjin Port’s strategic development planning.
Shi, YujieZhou, Xin
With the implementation of the "road-shift-to-rail" policy and the intensification of competition in the freight transport market, establishing a scientific and effective dynamic pricing mechanism has become a crucial factor in enhancing the competitiveness of railway freight. To address this, this paper constructs a multi-objective dynamic pricing model that comprehensively considers the interests of railway transport enterprises, shippers, and societal externalities. A new multi-objective genetic algorithm (NSGA-II) is designed to solve the model, and an empirical analysis is conducted based on real-world data from "road-shift-to-rail" projects. The research results indicate that the proposed method aligns closely with the current pricing practices of railway transport enterprises. For goods with low time sensitivity, greater freight rate discounts should be offered to shippers, whereas for high time-sensitive goods, the time gap between rail and road transport should be minimized.
Zhang, HengyuanFeng, ZhichaoWu, Xu
The International Roughness Index (IRI) is a key indicator for evaluating the performance of road surfaces. However, traditional measurement methods only focus on the evaluation data of a single longitudinal section and do not consider the lateral difference between the actual contact area between the tire and the road surface, which may lead to inaccurate evaluation results. In recent years, with the advancement of 3D laser scanning and digital photogrammetry technology, full-section data acquisition has brought new possibilities for roughness evaluation. However, how to find a balance between data fineness and computing efficiency has become a core problem that needs to be solved. Based on the principle of interaction between vehicles and road surfaces, this paper proposes to include only the pavement height data within the tire width range into IRI analysis, and establishes an evaluation framework based on standard tire-ground contact width. This method not only retains the key
An, HuazhenWang, RuiHan, XiaokunLuo, Yingchao
A smart highway tunnels lighting system based on the technology of cloud platform and Internet of Things(IoTs) has been designed to address the common problems of high energy consumption and low level of intelligence in China's highway tunnel lighting system. The highway tunnel lighting system consists of four layers of architecture: platform management layer, local management layer, middle layer and terminal layer. The system collects real-time brightness, lamp brightness, traffic volume and other data outside the tunnel through various sensors deployed on site, and then uploads the collected data to the main controller through LoRa IoTs. The main controller combines the brightness calculation method of the lighting design rules to control the brightness of the tunnel lighting in real time, achieving real-time adjustment of the brightness of the tunnel LED lights and the brightness outside the tunnel, and realizing a safe and energy-saving lighting effect of "lights on when the car
Wang, JuntaoLiu, JingyangLiu, YongFeng, Xunwei
With the advancement of cable-stayed bridge construction technology, the application of long-span concrete girder cable-stayed bridge is gradually extensive, making the study of construction technology and equipment for concrete main girders increasingly important. The cable hanging basket, a crucial piece of equipment for cable-stayed bridge construction, maximizes the cable’s bearing capacity, improves construction efficiency, and ensures safety and stability during construction. However, due to the varying structural designs and construction environments, the cable hanging basket must be specifically tailored for different cases. The Hanjiang Bridge on the Xi’an-Shijiazhuang High-speed Railway is China’s first steel-truss-reinforced PC box-girder cable-stayed bridge, with a main span of 420 meters. If conventional diamond-shaped hanging baskets are used for suspended casting of small sections, the construction period will not meet the construction requirements of this bridge. To
Li, Jian
In the context of the automotive industry’s rapid evolution, traffic safety has become a top priority. Automobile active safety technology has shown great potential in reducing traffic accidents. Soft targets in intelligent vehicle testing play a pivotal role in assessing active safety performance. However, these targets are designed according to standards set by European and American countries, which may not fully reflect China’s needs. The study’s objective is to design a library of pedestrian parameter models that meet Chinese standards. It began with the design of a representative pedestrian target, created using Chinese body size parameters and data. An experimental investigation was then conducted to determine the radar characteristics of pedestrian targets. A comparative analysis was performed with reference products. The study led to the creation of a model library for pedestrian targets, following the Chinese standard. It was formulated using experimental data and standards.
Tian, XinpengGuo, JuweiChen, XingyuZhang, JieZhang, XinWang, Ke
In recent years, the number of traffic accidents caused by the misuse of the accelerator pedal in China has been on the rise. To mitigate this issue and enhance road safety, an increasing number of vehicles are being equipped with anti - misuse systems for accelerator pedals. This paper comprehensively analyzes the composition and fundamental technical principles of the current mainstream anti - misuse systems for accelerator pedals, and derives the key aspects of system utilization from the perspective of driver - side operation. Subsequently, the Analytic Hierarchy Process (AHP) is employed to identify relevant evaluation indicators and assign appropriate weights. Based on these findings, a novel test and evaluation framework for such systems is proposed. Finally, real - world vehicle tests are conducted to validate the proposed framework. The results demonstrate that this evaluation system is capable of quantitatively assessing both system performance and human - machine interaction
Wang, ZhiyuZhang, Shan
With the rapid expansion of China’s intercity rail transit network, station connection systems play a crucial role in enhancing rail transit efficiency. The efficiency of their supply-demand matching has become a significant factor influencing regional transportation integration. This paper focuses on the Guangzhou-Dongguan-Shenzhen Intercity Railway as the research subject. It constructs a connection performance evaluation model that integrates multisource data from both supply and demand perspectives, revealing spatial differentiation patterns of station connection pressure and facility needs, and classifies the stations accordingly. Based on these findings, the paper proposes optimization strategies to inform intercity transportation planning and the development of intelligent transportation systems. Intercity railway, connection performance, data envelopment analysis, Guangdong-Hong Kong-Macao Greater Bay Area, evaluation model
Hu, QiyueGao, Yifei
In this paper, a systematic and in-depth study is carried out on the key engineering problem of the accurate calculation of the flexural capacity of L-shaped concrete-filled steel tubular columns. Based on the basic framework of mechanics theory, the basic design principle of reinforced concrete members is integrated, and the nonlinear characteristics of steel and concrete materials in the process of stress are mainly considered, such as steel yield strengthening, concrete compression damage, etc., and the ultimate bending moment calculation model which is more suitable for the actual stress state is constructed. Through rigorous theoretical derivation and multi-parameter comparative analysis, the final formula for calculating the bearing capacity of special-shaped columns not only has clear mechanical concept support, but also systematically defines the scope of application of the calculation method. The verification results show that the established calculation method not only meets
Wang, CuicuiBai, ShouyanWei, HongxianLv, ShuangXu, Yafeng
Implementing knowledge modelling tools of concrete structure strengthening solutions for existing buildings addresses the urgent needs of urban renewal efforts. This paper thoroughly investigates the application of Natural Language Processing (NLP), and knowledge graphs for organizing and managing complex information related to building strengthening strategies. By developing an ontology model for solutions and supplementing it with methods for generating word vectors and annotating data, this study constructed a comprehensive framework for the management of strengthening solution knowledge. A case study on the partial structural strengthening validated the applicability of the proposed model in facilitating recommendations for similar cases and supporting solution design. This research under-scores the transformative impact of digital technologies and knowledge modelling on the efficiency and quality of urban renewal projects, contributing to the advancement of smart cities. The
Zhang, ZhuohaoLuo, HanbinWu, HaozhengChen, Weiya
In response to the inefficiency, slow speed, and reliance on specialized software in traditional methods for evaluating seismic stability of loess highway slopes, a simplified rapid assessment method is proposed. Based on post-earthquake landslide investigations, geotechnical surveys, and vibration table model tests, and integrates the latest research on seismic damage mechanisms of loess slopes, the potential sliding surface of seismic damage loess slope is divided into three segments: tensile fracture, shear, and anti-sliding zones, the potential sliding mass is partitioned into three blocks, and calculate the sliding force and anti-slip force of each potential sliding block from top to bottom, when the sliding force the upper sliding body is greater than its anti-sliding force, the excess sliding force is transmitted to the lower potential sliding body, and the stability of the slope is determined based on the ratio of the anti-sliding force and the sliding force of the lowest
Pu, XiaowuZhang, LizhiPu, ShuyaChe, Gaofeng
Based on field investigations of loess slopes along highways in the Lüliang region, a numerical infiltration model of highway loess slopes was established using the ABAQUS finite element software. The study examined the time to plastic zone coalescence and variations in infiltration range under two intense rainfall scenarios for slopes of different heights. Furthermore, a landslide numerical model of the loess slope was constructed using the FEM-SPH method, and a predictive formula for landslide runout distance of highway loess slopes was derived through data fitting.The results indicate that under the same slope height, increased rainfall intensity leads to a certain degree of reduction in landslide runout distance. Conversely, under the same rainfall condition, greater slope height significantly increases the runout distance. This study provides a theoretical foundation and methodological support for stability evaluation and runout distance prediction of loess slopes under intense
Liu, ManfengLi, Hong
As China’s socio-economic progress accelerates, residents’ mobility preferences are growing more varied. Owing to their eco-friendliness, high capacity, fixed routes and low prices, pure-electric buses have become a key component of urban transit. Yet day-to-day service is hindered by low fleet availability, limited daily kilometres and poor service quality, all of which erode operation efficiency. Taking Wuhu’s public transport network as a case study, this paper builds a performance-assessment framework for electric bus routes. Using stop-level topology, vehicle specifications and spatiotemporal passenger-flow data from eight representative routes, the study applies the Analytic Hierarchy Process (AHP). A three-tier hierarchy—goal, criteria and alternatives—is constructed; index weights and pairwise comparison matrices are then computed to rank overall route effectiveness. The findings accurately pinpoint operational bottlenecks and furnish quantitative guidance for adaptive network
Hu, TingtingLiang, ZijunLi, XiaoyanZhang, XinyiWang, MengruHu, YufengJiang, Kang
Under the background of advancing the integration of urban and rural road passenger transport and the bus-oriented transformation of scheduled passenger transport, the traditional road passenger transport market has been severely impacted. There is an urgent need to promote the healthy development of chartered passenger transport to meet the public’s demand for high-quality travel. Based on the supply-demand balance theory, a prediction model for chartered passenger transport capacity scale was constructed, and the capacity scale of chartered passenger transport in a typical city was predicted as an example. Finally, countermeasures and suggestions for chartered passenger transport capacity allocation were proposed from five aspects: planning formulation, risk warning, mechanism clarification, performance evaluation, and responsibility implementation.
Zhao, HaibinZhao, XiangyuXing, LiWei, LinghongPeng, XiaoLiao, Kai
Intelligent capacity optimization of highways could realize intelligent enhancement of traffic capacity by optimizing traffic management, improving traffic efficiency and enhancing system synergy without significantly increasing physical lanes. However, there was a lack of a unified and perfect index system to scientifically evaluate the effectiveness of such projects. This paper analyzed the basic theory, evaluation indicator structure and system, and puts forward seven key evaluation dimensions, which including traffic efficiency enhancement, traffic safety improvement, economic and cost-benefit, environmental impacts, technology application and innovation, system reliability and resilience, and service experience. This paper screened the specific evaluation indexes of the seven dimensions and proposes the hierarchical structure of the index system and the weight determination method. This paper constructed a comprehensive, multi-dimensional evaluation index system for highway smart
Che, XiaolinLi, WeichenZhu, LiliLi, XinWang, Lin
The presence of time-varying loads on shell structures can result in the generation of undesirable noise in the time domain. This paper presents a time-domain noise control method based on piezoelectric smart shell structures. Firstly, a coupled time-domain finite element/boundary element method (TDFEM/BEM) is used to calculate the sound pressure radiated from shell structures subjected to arbitrary time-varying loads. Then a classical time-domain CGVF algorithm is used to control the vibration and to suppress the sound radiation from structures. Finally, numerical examples demonstrate a 44.2% reduction in the displacement response, a 35.8% decrease in acceleration response, a 36.2% decline in sound pressure of the central node, and a 28.5% decrease in average surface sound pressure. The results show that after CGVF control, the vibration and radiation noise of the plate/shell structure under time domain load are effectively reduced, which is of great significance in engineering
Zheng, HaoWang, HongfuLi, JingjingZhou, QiangSun, YongZhou, LingZhang, HongliangWang, BaichuanHuang, JunsongLiu, XiaorangYin, Guochuan