Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 711

Recently Published

Browse All
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for automotive units with the primary drive hypoid gears, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. The information contained within is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI). A complete listing of qualification submission requirements and
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate 0.015 to 1.5 inches (0.38 to 38 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a titanium alloy in the form of sheet, strip, and plate up to 4.000 inches (101.60 mm), inclusive (see 8.6).
AMS G Titanium and Refractory Metals Committee
The acquisition of sensor data is essential for the operation and validation of the SAE vehicle. This system must be capable of converting analog data into digital form and communicating with the sensors. To this end, printed circuit boards (PCBs) were designed and manufactured, incorporating electromagnetic interference mitigation solutions through various analog filters, in order to ensure the integrity of the acquired signals. Data conversion and communication were implemented using a microprocessor from the STM32 family, with efficient transmission of the processed data carried out via the CAN protocol.
David, Mateus PadilhaAndrade, Fernanda Matsumoto LimaSousa Oliveira, IvanCarvalho, Luis Pedro FeioGuerreiro, Joel FilipeRibeiro, Rodrigo EustaquioSantos Neto, Pedro José
In the context of emerging technology developed for advanced air mobility concept, its maintenance protocols are not yet mature and existing aviation maintenance systems may not support electric-vertical take-off and landing (e-VTOL) needs. Thus, the operation of e-VTOL aircraft during its deployment stage necessitates the need for qualitative maintenance support. The main purpose of this study is to develop the basic structural principles of the projected new maintenance, repair, and overhaul (MRO) organization for e-VTOL air vehicles, which will support airworthiness through comprehensive maintenance approaches. Thus, the operation of e-VTOL aircraft during its deployment stage necessitates the need for qualitative maintenance support. The importance of the study is to offer standard procedures based on management and maintenance strategies, application of predictive and prescriptive maintenance tools, which pose a significant contribution to ensuring safety, reliability, and cost
Imanov, TapdigBozdereli, Arzu
The transition to renewable fuels is critical to reduce greenhouse gas emissions and achieve carbon neutrality in the transportation sector. Ethanol has emerged as a promising biofuel for compression ignition (CI) engines due to its renewability and low-carbon profile. However, its low cetane number, high latent heat of vaporization, poor lubricity, and corrosive properties severely limit its auto-ignition capability and durable operation under conventional CI conditions. Building upon previous work using a Rapid Compression Machine (RCM) to assess ignition improvers for ethanol, this study explores a broader range of fuel formulations to enhance ethanol-based combustion. A total of nine blends were prepared, consisting predominantly of hydrated ethanol (50-80% by volume), combined with 5-25% biodiesel and up to 5% of a commercial ignition improvers. The biodiesel component acted both as a co-solvent and as a combustion stabilizer, particularly under cold-start conditions. Tests were
Bacic, Denise AmatoSánchez, Fernando ZegarraTicona, Epifanio MamaniPradelle, Renata Nohra ChaarSantos Coelho, Lucas dosMota, Crislane Almeida Pereira daPradelle, Florian
This research aimed to develop a method for identifying and prioritizing the feasibility of automation in administrative processes, using as an example an application in a Shared Services Center (SSC) of a Brazilian multinational in the auto parts sector. The study considers the use of various automation technologies, including Robotic Process Automation (RPA), Decision Rules, Extract, Transform, Load (ETL), Analytics, and Workflow, with the goal of optimizing operational efficiency and reducing costs. The methodological approach adopted is based on Design Science Research (DSR), allowing for the creation and validation of an innovative artifact that, through a questionnaire applied to each process, assists in identifying the administrative processes most suitable for automation. Using the questionnaire responses, an indicator is calculated related to the percentage of automation feasibility (Paut) of the processes. The results obtained demonstrate an artifact that makes the
Junior, Osvaldo Vicente JardimCampos, Renato deFranco, Bruno Chaves
The integration of sensory stimuli in Virtual Reality remains a challenge in the automotive industry, especially regarding consumer perception and immersive experience. This study aims to examine the applications of virtual reality in the automotive industry, analyzing how the integration of sensory stimuli can impact consumer perception, the technological challenges involved, and the opportunities for innovation in the sector, contributing to the advancement of immersive automotive experiences. We adopted a literature-based analytical approach, involving the review of VR technologies applied to product design, consumer interaction, and sensory integration, with a focus on tactile, visual, and olfactory stimuli. The analysis considered technological, cultural, and market factors, ensuring a comprehensive understanding of the current state and challenges of VR adoption in the automotive context. As a result, we identified key benefits of VR in improving design, testing, training, and
Ramos, CatharinaThasla, YasmimRodrigues, DanielaAlfonso, MarcioLeite, RodrigoRibeiro, EuláliaWinkler, Ingrid
The mobility electrification process is currently of great interest due to its environmental appeal, but it is accompanied by new technical requirements for vehicle systems, the powertrain being one of those with the most significant trade-offs to be solved. Higher power densities, higher torque efficiency and lower noise and vibration generation are simultaneously required. The literature shows that the manufacturing chain can influence the final state of surface integrity of a part, which affects the operational behavior and service life of a component. Therefore, a customized transmission system design for electric propulsion requires several analyses, from the raw material to the gear manufacturing processes, so that surface integrity plays a significative role in the required performance. From the perspective of their capability to meet the e-mobility requirements in terms of surface integrity is essential to conduct a comparative analysis of gear manufacturing processes. So, the
Gomes, Caio F. S.Gomes, Gilberto M. O.Colombo, Tiago C. A.Rego, Ronnie R.Michelotti, Alvaro C.Berto, Lucas F.
The concept of “quality feel” in automotive interiors relates to how consumers perceive a product’s quality through touch and feel. While subjective, it’s crucial for satisfaction and differentiation and is defined by engineering requirements like displacement, especially for interior components. Assessing this early in development is vital. Traditionally, this evaluation happens virtually using Computer Aided Engineering (CAE) simulations, which measure displacement and stiffness. However, conventional simulation methods, like Finite Element Method (FEM), can be time-consuming to set up. This work presents two case studies where the evaluation of an interior panel’s quality feel, using structural numerical simulations combined with the Simulation Driven Design (SDD) method was performed. SDD is an iterative process where simulation results guide design modifications, optimizing the component until it meets quality criteria, which are based on simulated human touch and resulting
Cunegatto, Eduardo Henrique TaubeCisco, Lenon AudibertSilva, Matheus RodriguesThums, EsmaelQuinelato, LeandroAraújo, Tomás Victor Gonçalves Pereira
The DrivAer model has been widely studied both numerically and experimentally in terms of aerodynamic performance, providing an interesting and large database for Computational Fluid Dynamics (CFD) codes validation. Soiling simulations are a new trend in the automotive industry since the development of self-drive features and autonomous vehicles, which rely mostly on sensors. Dust, water or incorrect positioning of the sensors may lead vehicles to fail on self-driving tasks and might cause accidents or wrong operation. This study aims to contribute to the automotive community by performing a CFD soiling simulation on the DrivAer fastback model and evaluate its performance in terms of water accumulation and how the water particles interact with the flow structures. The particle trajectory and the impingement regions are evaluated and illustrated in order to provide a map for correct sensor position or adding cleaning points. Two DrivAer fastback vehicles are considered for the study and
Buscariolo, Filipe FabianGonzales, José Fernando PazVolpe, Leonardo José DellaAlves, Julio Cesar Lelis
The growing concern regarding global warming pushes the contribution of all emitting sources to mitigate greenhouse gases. The significant light passenger vehicle fleet deserves continued attention, both in the implementation of more efficient new technologies and in the optimization of conventional technologies, which are still widely used. The vehicle’s energy efficiency is directly influenced by the coupling of the internal combustion engine to the transmission system. Engines have a restricted operation region of maximum efficiency that must be adequately explored by the transmission system in the different conditions of vehicle use. Thus, this paper analyzes and quantifies the sensitivity of the vehicle’s energy efficiency of two distinct engine technologies, naturally aspirated and turbocharged, coupled to an automatic transmission system with six discrete or continuously variable gears. Experimental data on the overall efficiency of the engines and the transmission concepts
Rovai, Fernando FuscoMenezes Lourenço, Maria Augusta deRohrig, Marcelo
Safety improvements in vehicle crashworthiness remain a primary concern for automotive manufacturers due to the increasing complexity of traffic and the rising number of vehicles on roads globally. Enhancing structural integrity and energy absorption capabilities during collisions is paramount for passenger protection. In this context, longitudinal rails play a critical role in vehicle crashworthiness, particularly in mitigating the effects of rear collisions. This study evaluates the structural performance of a rear longitudinal rail extender, characterized by a U-shaped, asymmetric cross-section, subjected to rear-impact scenarios. Seventy-two finite-element models were systematically developed from a baseline configuration, exploring variations in material yield conditions, sheet thickness, and targeted geometric modifications, including deformation initiators at three distinct positions or maintaining the original geometry. Each model was simulated according to ECE R32 regulation
Souza Coelho Freitas, Victor dePereira, Romulo FrancoSouza, Daniel Souto de
22
Rodrigues, Jônatas SoaresMoreira, Thiago Augusto AraújoSouza Pereira, Felipe Augusto deCastro, Daniel Enrique
During the design phase of a vehicle, particularly regarding its dynamic behavior, engineers face a wide range of variables and distinct configurations. Intuitively, defining these parameters to meet pre-established project targets can be a challenging task. Moreover, the constant need to obtain valuable information from vehicle telemetry further complicates the process. Simultaneously, the growing use of Machine Learning (ML) algorithms, frequently employed in such cases, is highlighted. Those methods rely on identifying patterns within a pre-existing database, and, regardless of the specific technique applied, if the input data lacks meaningful relationships, Artificial Intelligence (AI) approaches are unlikely to produce satisfactory results. Considering the often utilized nature of these tools as a notable change across various fields, especially if combined with Data Science, developing virtual vehicle models with the aid of those techniques becomes an interesting solution for
Rodrigues, CádmoJúnior, Jánes Landre
This study presents the results of applying a Lean Six Sigma-based analytical approach to optimize the manufacturing of automotive coatings, specifically in a PU primer filling process. Through production flow mapping and the Define, Measure, Analyze, Improve, and Control (DMAIC) methodology, unplanned stoppages in the filling line were significantly reduced, addressing critical inefficiencies in automotive coating production. The research was driven by the need to enhance manufacturing productivity and ensure process reliability in the production of coatings used in the automotive sector. To achieve this, Quality Management tools, such as Pareto Analysis and the Cause-and-Effect Diagram, along with Lean Manufacturing techniques, including Kaizen Blitz, were applied. These methods facilitated the identification and mitigation of key causes of unplanned downtime, improving process efficiency and reliability. The results demonstrated a significant reduction in downtime, enhanced
Filho, William Manjud MalufRodrigues, Mateus FerreiraCarriero, Emily AmaralYoshimura, Sofia LucasMarini, Vinicius KasterSiqueira, GonçaloAlves, Marcelo Augusto Leal