Your Destination for Mobility Engineering Resources
Recently Published
Browse AllThe gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for automotive units with the primary drive hypoid gears, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. The information contained within is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI). A complete listing of qualification submission requirements and
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate 0.015 to 1.5 inches (0.38 to 38 mm) in nominal thickness.
This specification covers a titanium alloy in the form of sheet, strip, and plate up to 4.000 inches (101.60 mm), inclusive (see 8.6).
The concept of “quality feel” in automotive interiors relates to how consumers perceive a product’s quality through touch and feel. While subjective, it’s crucial for satisfaction and differentiation and is defined by engineering requirements like displacement, especially for interior components. Assessing this early in development is vital. Traditionally, this evaluation happens virtually using Computer Aided Engineering (CAE) simulations, which measure displacement and stiffness. However, conventional simulation methods, like Finite Element Method (FEM), can be time-consuming to set up. This work presents two case studies where the evaluation of an interior panel’s quality feel, using structural numerical simulations combined with the Simulation Driven Design (SDD) method was performed. SDD is an iterative process where simulation results guide design modifications, optimizing the component until it meets quality criteria, which are based on simulated human touch and resulting
Safety improvements in vehicle crashworthiness remain a primary concern for automotive manufacturers due to the increasing complexity of traffic and the rising number of vehicles on roads globally. Enhancing structural integrity and energy absorption capabilities during collisions is paramount for passenger protection. In this context, longitudinal rails play a critical role in vehicle crashworthiness, particularly in mitigating the effects of rear collisions. This study evaluates the structural performance of a rear longitudinal rail extender, characterized by a U-shaped, asymmetric cross-section, subjected to rear-impact scenarios. Seventy-two finite-element models were systematically developed from a baseline configuration, exploring variations in material yield conditions, sheet thickness, and targeted geometric modifications, including deformation initiators at three distinct positions or maintaining the original geometry. Each model was simulated according to ECE R32 regulation














