Your Destination for Mobility Engineering Resources
Announcements for SAE Mobilus
Browse AllRecently Published
Browse AllData security remains an issue of the utmost concern in contested environments. Mechanisms such as data encryption, beam-forming antennas, and frequency-hopping radio have emerged to mitigate some of the concerns in radio-frequency (RF) communications, but they do not remove all risk. Consequently, there is still a consistent appetite for alternative solutions. This paper presents a case for the use of the free-space optical (FSO) communications technology ImpLi-Fi as one such alternative. FSO communication is promising because of the ease with which the signal beam may be steered and limited, making detection and interception more difficult than with RF, and ImpLi-Fi in particular is desirable for its exceptional outdoor performance and ease of integration into existing light sources. The paper briefly illustrates the origins of the contested logistics (CL) problem and CL use cases for secure communication channels, before describing the ImpLi-Fi technology in some detail; exploring
Advances in conformable tank technology have resulted in opportunities to harness and deploy hydrogen energy in a variety of operational environments. Various use cases are described, and the benefits of these unique storage systems in vehicular, stationary, and bulk storage applications are illustrated. The impressive scalability of conformable hydrogen tank production is also explained, as it relates to the cost effective and broad application of these storage systems.
As unmanned vehicular networks become more prevalent in civilian and defense applications, the need for robust security solutions grows in parallel. While ROS 2 offers a flexible platform for robotic operations, its security model lacks the adaptability required for dynamic trust management and proactive threat mitigation. To address these shortcomings, we propose a novel framework that integrates containerized ROS 2 nodes with Kubernetes-based orchestration, a dynamic trust management subsystem, and integrability with simulators for real-time and protocol-flexible network simulation. By embedding trust management directly within each ROS 2 container and leveraging Kubernetes, we overcome ROS 2’s security limitations by enabling real-time monitoring and machine learning-driven anomaly detection (via an autoencoder trained on custom data), facilitating the isolation or removal of suspicious nodes. Additionally, Kubernetes policies allow seamless scaling and enforcement of trust-based
The Vision for Off-road Autonomy (VORA) project used passive, vision-only sensors to generate a dense, robust world model for use in off-road navigation. The research resulted in vision-based algorithms applicable to defense and surveillance autonomy, intelligent agricultural applications, and planetary exploration. Passive perception for world modeling enables stealth operation (since lidars can alert observers) and does not require more expensive or specialized sensors (e.g., radar or lidar). Over the course of this three-phase program, SwRI built components of a vision-only navigation pipeline and tested the result on a vehicle platform in an off-road environment.
In modern defense manufacturing, achieving technological superiority hinges on both rapid decision-making and unparalleled precision engineering. Advanced machining systems, such as 5-axis CNC machines, play a pivotal role by enabling the production of intricate, free-form geometries with micron-level accuracy. However, these advances often necessitate deep domain expertise for optimal tool selection and machining parameter configuration. This paper introduces GraphLLM, a model-agnostic approach that integrates structured knowledge graphs with large language models (LLMs) to enhance the accuracy and reliability of technical responses. By automatically extracting domain-specific entities and relationships from documents, GraphLLM mitigates LLM hallucinations and improves performance, especially in technically challenging or out-of-distribution queries. Experimental evaluations across various LLaMA models demonstrate significant uplifts of 25%, highlighting the framework’s potential to
The use of modeling and simulation (M&S) to enable aggressive training, testing, analysis, and experimentation of capabilities has risen in recent years. An increase in M&S demand to enable Force Readiness necessitates the use of modular and reusable simulation software. To meet this need, the U.S. Army Combat Capabilities Development Command Ground Vehicle Systems Center (DEVCOM GVSC) has developed a modular simulation software framework called Project Great Lakes (ProjectGL). The software supports complex simulation requirements for multiple vehicles, terrains, sensors and other technologies, while using a common, internal framework to support extensive configuration. The paper presents the framework’s core design philosophy, architecture and common use cases. The paper concludes with a discussion on possible areas of framework expansion and development guidelines for partners interested in extending the framework.
CAMX Power is developing enhanced safety, high-power, OV-tolerant Li-ion 6T batteries implementing our CELX-RC® chemistry which incorporates our proprietary GEMX® cathode opposite lithium titanate (LTO) anode. The advantages of the CAMX Power 6T battery include high tolerance of severe mechanical, thermal and electrical abuse, exceptional fast charge capability, and extreme low-temperature performance capabilities (e.g., -60 °C). This 6T battery can also be repeatedly discharged to 0V and stored in that condition without maintenance, greatly enhancing logistical management, handling and safety. The CAMX Power 6T battery will provide enhanced performance and safety in extreme environments and operational conditions which cannot be met by 6T batteries made with conventional Li-ion chemistry.
Thermal or infrared signature management simulations of hybrid electric ground vehicles require modeling complex heat sources not present in traditional vehicles. Fast-running multi-physics simulations are necessary for efficiently and accurately capturing the contribution of these electrical drivetrain components to vehicle thermal signature. The infrared signature and heat transfer simulation tool, “Multi-Service Electro-optic Signature” (MuSES), is being updated to address these challenges by expanding its thermal-electrical simulation capabilities, provide a coupling interface to system zero- and one-dimensional modeling tools, and model three-dimensional air flow and its convection effects. These simulation capabilities are used to compare the infrared signatures of a tactical ground vehicle with a traditional powertrain to a hybrid electric version of the same vehicle and demonstrate a reduction in contrast while operating under electrically powered conditions of silent watch and
Increasing the mission capability of ground combat and tactical vehicles can lead to new concepts of operation that enhance safety and effectiveness of warfighters. High-temperature power electronics enabled by wide-bandgap semiconductors such as silicon carbide can provide the required power density to package new capabilities into space-constrained vehicles and provide features including silent mobility, boost acceleration, regenerative braking, adaptive cooling, and power for future protection systems and command and control (C2) on the move. An architecture using high voltage [1] would best satisfy the ever-increasing power demands to enable defense against unmanned aerial systems (UAS) and offensive directed energy (DE) systems for advanced survivability and lethality capabilities.
Object detection has many different uses in Command and Control (C2) systems such as autonomous control, target tracking, threat detection, and general surveillance. Graphics Processing Units (GPUs) are the de-facto standard hardware for these types of workloads in datacenter environments. Still, when deploying to an edge environment many considerations are required to ensure an optimized deployment. This paper provides a general overview of how to utilize GPUs for AI inference for object detection at the edge using NVIDIA® HoloScan as well as an overview of the many considerations to account for when selecting the most optimal GPU for any specific ground vehicle solution.
The development of cyber-physical systems necessarily involves the expertise of an interdisciplinary team – not all of whom have deep embedded software knowledge. Graphical software development environments alleviate many of these challenges but in turn create concerns for their appropriateness in a rigorous software initiative. Their tool suites further enable the creation of physics models which can be coupled in the loop with the corresponding software component’s control law in an integrated test environment. Such a methodology addresses many of the challenges that arise in trying to create suitable test cases for physics-based problems. If the test developer ensures that test development in such a methodology observes software engineering’s design-for-change paradigm, the test harness can be reused from a virtualized environment to one using a hardware-in-the-loop simulator and/or production machinery. Concerns over the lack of model-based software engineering’s rigor can be