Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 721

Recently Published

Browse All
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
The increasing demand for quiet and efficient electric vehicles has highlighted the importance of understanding vibration and noise characteristics of motor stators. Previous studies have extensively modeled electromagnetic excitation and laminated structures, but there has been little experimental evidence clarifying how different interlaminate fastening methods affect vibration modes under comparable conditions. This knowledge gap limits the ability to optimize fastening strategies for noise and vibration control in practical motor design. In this study, laminated stator cores were fabricated with different fastening conditions—bolting, clinching, and welding—and subjected to vibration testing and experimental modal analysis. Natural frequencies, damping ratios, and mode shapes were identified for torsional, circumferential, and breathing modes. The results revealed that the in-plane torsional natural frequencies increase with bolt axial force, while clinching provides additional
Matsubara, MasamiSaito, AkiraShimada, ShogoOishi, TaizanFuruya, KoheiKawamura, ShozoTajiri, Daiki
This document is to be used as a checklist by curriculum developers to create courses or training for critical composite repair, maintenance, and overhaul issues. This document will not take the place of courses or training requirements for specific job roles of a composite repair technician, inspector, or engineer.
AMS CACRC Commercial Aircraft Composite Repair Committee
This specification covers an aluminum alloy in the form of sheet and plate, alclad both sides, supplied in the -T361 temper.
AMS D Nonferrous Alloys Committee
The aim of this study is to develop a methodology to significantly reduce emissions in bus fleet renewal scenarios by investigating both technical and economic aspects. This work presents a case study based on Elba Island, Italy, which investigates optimal solutions for replacing existing Diesel buses through a total cost of ownership analysis. The investigation is carried out for four different potential scenarios: renewing the fleet with Diesel buses, renewing the fleet with electric buses, adopting fuel cell buses, and implementing a hybrid solution. The latter represents a synergistic solution that integrates fuel cell buses with the development of a hydrogen refueling station driven by a proton exchange membrane electrolyzer, unlocking the techno-economic potential of self-producing green hydrogen for bus refueling. The novelty of this study is its integrated methodology that combines a total cost of ownership analysis with a tailored design of a green hydrogen production network
Bove, GiovanniSorrentino, MarcoBaldinelli, AriannaDesideri, Umberto
SCOPE IS UNAVAILABLE.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This specification covers a corrosion-resistant steel product in the solution and precipitation heat-treated (H1025) condition, 4 inches (102 mm) and under in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This Aerospace Information Report (AIR) has been written to provide in-service reliability data of continuously active ball screw and geared flight control actuation systems.
A-6B3 Electro-Mechanical Actuation Committee
This specification covers the requirements for an inorganic blackening solution for steel, applied at room temperature.
AMS B Finishes Processes and Fluids Committee
The purpose of this study was to evaluate the thoracic responses of the 50th-percenitle male Hybrid III, THOR, and post mortem human surrogates (PMHS) in the rear seat during frontal sled tests using conventional and advanced restraints in multiple vehicle environments. Twenty-one sled tests were conducted using the Hybrid III and THOR in seven vehicle bucks, and 12 PMHS sled tests were performed using four vehicle bucks. Trends in chest deflections between vehicles and restraint conditions were compared between surrogates. The Hybrid III and THOR thoracic injury risk predictions were compared to the thoracic skeletal damage observed during the PMHS tests. The Hybrid III chest deflections were statistically significantly greater for vehicles equipped with conventional restraints compared to those equipped with advanced restraints. The THOR chest deflections generally followed this trend, but the differences between restraint types were not statistically significant. Hence, the THOR
Albert, Devon L.Bianco, Samuel T.Guettler, Allison J.Boyle, David M.Kemper, Andrew R.Hardy, Warren N.
This specification covers an aluminum alloy in the form of alclad sheet and plate 0.020 to 0.500 inch (0.508 to 12.70 mm), inclusive, in thickness, supplied in the -T361 temper (see 8.5).
AMS D Nonferrous Alloys Committee
Range estimation for electric vehicles based on standard drive cycles generally underestimates energy consumption and fails to accurately represent the actual driving characteristics. This paper aims to develop a representative driving cycle for electric two-wheelers that emulate the real-world driving scenario in Lucknow, India. The micro-trip-based random selection scheme is used to form the drive cycle. The onboard Global Positioning System (GPS) module is used to log vehicle speed data for every second, and nine assessment parameters were used to analyze the candidate drive cycles. The total duration of the developed drive cycle is 1800 s, and the length is 17.45 km. Traffic attributes of the developed drive cycle are compared with the India drive cycle (IDC), Delhi motorcycle drive cycle (DMDC), and Edinburgh motorcycle drive cycle (EMDC). A comparison of the estimated energy requirement of the developed drive cycle with IDC indicates that the estimated actual energy requirement
Vashist, DevendraPandey, BhaskarMalik, Varun
This study investigates the feasibility of a novel internal combustion engine (ICE) architecture, termed the membrane engine, in which the conventional piston is replaced by a flexible elastic membrane. Although the concept appears in several patent documents proposing reduced friction, improved sealing, and lower heat losses, no empirical data has been published to support these claims. To the authors’ knowledge, this work presents the first membrane engine built and experimentally tested. The primary aim is to verify whether such an engine can operate as a functional ICE, regardless of its current efficiency or performance level. To support concept validation, a simplified mathematical model was developed to describe the membrane’s deformation and its effect on combustion chamber volume. Unlike conventional piston engines, the membrane introduces a pressure-dependent geometry, enabling a variable compression ratio. The model is not intended to predict performance but to assist in
Allmägi, RolandIlves, Risto
Electric vehicle (EV) battery life cycle assessment (LCA) is emerging as a strategic necessity amid booming demand and tightening environmental regulations. This report consolidates key findings and recommendations for EBRR (Electric Battery Reuse & Recycling) to implement a comprehensive LCA program covering EV lithium-ion batteries from cradle-to-grave and cradle-to-cradle perspectives. The study confirms that global Li-ion battery demand is skyrocketing – projected to increase 14-fold by 2030[1] – amplifying the urgency for sustainable battery management (see Figure 1). It outlines the full life cycle stages of EV batteries (raw material extraction, manufacturing, use, and end-of-life) and compares linear vs. circular approaches. Using the ISO 14040/44 framework[18, 19] and industry-standard LCA tools, the report evaluates environmental impacts and identifies hotspots. Key findings show that mining and manufacturing dominate the battery’s carbon footprint, but end-of-life strategies
Asokan, GayathriRaju cEng, RajkumarDhananjaya, ChandanSattigeri cEng, Sudhir V
With the development in motor technology and battery technologies, the scope for a low-cost EV has been increasing in India. There remains an after-mark potential for conversion of an ICE powered two-wheeler to an EV power train. Such a move reduces the carbon footprint from the vehicle drastically and is still being explored. This study investigates the effect of replacing the ICE with an electric motor in a 125cc motorcycle, with a particular focus on vehicle handling performance using Slalom test. The two wheelers were modelled using calculated mass properties and estimated / calculated moments of inertia using CAD for both ICE and electric powertrains. The electric propulsion system took into consideration the role of a battery pack in the mass and MI calculation. The framework with degrees of freedom is well established in BIKESIMTM simulation environment. A slalom test with automatic gear shift and throttle to maintain speed of the vehicle was set-up to estimate the handling
Sankarasubramanian, HariharanM, ShaghasraV, Ramprathap
Conventional tractor transmission systems feature separate Brake and Bull Cage housings, with brakes often being proprietary components and Bull Cage designed by the Original Equipment manufacturer (OE). To optimize design and performance, an innovative integrated system was developed, combining an in-house braking system with a unitized Bull Cage assembly. This robust design reduces part count, eliminates proprietary dependency (except for friction liners), and enhances performance. Virtual simulations performed under RWUP conditions demonstrated enhanced strength and stiffness in the integrated design. In this Integrated Brake & Bull Cage assembly (IBCA), the braking layout was reconfigured from a 4+1 friction design to a 3+2 configuration which improved balancing, enhancing customer braking experience and increasing contact area by 11%. This adjustment extends friction liner life and boosts mechanical advantage by 7.9%, significantly improving tractor stability and performance
Dumpa, Mahendra ReddyDhanale, SwapnilPerumal, SolairajGomes, MaxsonRedkar, DineshSavant, KedarnathV, Saravanan
The integration of ethanol into gasoline presents compatibility challenges for automotive fuel-system materials. In this study, the degradation of NBR-PVC fuel hoses exposed to ethanol-gasoline blends (E30, E50, E70, and E100) was investigated under dynamic flow conditions. A custom-designed test rig simulates real-time fuel circulation for 1,200 h. FESEM, ATR-FTIR, and elemental mapping analyses revealed ethanol-induced degradation, including dehydrochlorination, plasticizer leaching, and filler detachment. Among the blends, E30 exhibited the least material degradation, whereas E100 showed significant surface damage and chemical alteration. This study recommends multilayered fuel hose structures with ethanol-resistant inner linings for enhanced durability.
PC, MuruganL S, AdhityaG, Arun PrasadW, Beno WincyT, Karthi
The spring link or the lower control arm (LCA) is a critical structural component in a multi-link rear suspension system especially in a sports utility vehicle (SUV). The design of the rear LCA is thus challenging due to higher loads owing to higher suspension articulation typical of a SUV and further complicated in a born electric vehicle (BEV) due to increased vehicle weight contributed by a large battery. In the present work, a novel LCA was designed for the rear suspension system of one such born electric SUV application. The unique link was designed to withstand 20% higher rear axle weight compared to the conventional LCA used in a typical SUV. The LCA housed the spring with increased stiffness and a semi-active damper with varying and higher damping forces which complicated the design. The link design was further complicated with stab link mounting provision and mass damper mounting for improved NVH performance. Furthermore, the link was designed to withstand significantly higher
Selvaraj, SaravananNayak, BhargavJ, RamkumarM, SudhanChaudhari, Varun