Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 711

Recently Published

Browse All
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for automotive units with the primary drive hypoid gears, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. The information contained within is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI). A complete listing of qualification submission requirements and
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate 0.015 to 1.5 inches (0.38 to 38 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a titanium alloy in the form of sheet, strip, and plate up to 4.000 inches (101.60 mm), inclusive (see 8.6).
AMS G Titanium and Refractory Metals Committee
Tracked Military Vehicles are well known in armed forces, due to their use and importance in conventional combat, playing a crucial role since World War I until current combats. Also, as it happens in different generations, the environment involved in these wars changes and those vehicles are being used not only in open field situations, but inside residential neighborhoods also. However, despite their relevance, analyses and studies aimed at understanding these vehicles are scarce at the undergraduate level, which creates a gap among the recent graduate engineers that want to learn and understand how tracked vehicles perform in different scenarios. This is important because understanding initial concepts helps to bring more ideas and start more detailed studies in the area. Therefore, to bridge this gap, a detailed dynamic analysis of a tracked military vehicle is conducted using MATLAB with a dynamic model to evaluate performance, level transitions, and acceleration. Additionally
Dalcin, Pedro Henrique KleimRibeiro, Levy PereiraLopes, Elias Dias RossiRodrigues, Gustavo Simão
SAE International extends its heartfelt thanks to Tom Ryan for his dedicated work as Editor-in-Chief of the SAE International Journal of Engines from 2008 to 2025. His vision for SAE allowed and encouraged the establishment of our journals program in 2008. As the SAE president that year, he saw the launch of our first journals, assuming the leadership for this journal, as well as establishing the beginning of our other journals. His dedication has helped to establish the journal as an impactful venue for academics and industry researchers alike. Dr. Ryan has been the leading force behind the SAE International Journal of Engines since its inception and is now retiring at the end of 2025 after an impressive tenure with the journal. Because of his instrumental policies and practices, Dr. Ryan will be listed on the journal as Founding Editor in perpetuity. We offer our thanks and great respect for his efforts, dedication, and leadership throughout the years. Dr. Ryan has been working
Martin, Kimberly J.
Vehicle electrification has introduced new powertrain possibilities, such as the use of four independent in-wheel motors, enabling the development of control strategies that enhance vehicle safety and drivability. The development of a model capable of simulating vehicle behavior is fundamental for control system design. A high-fidelity model takes into account several parameters, such as vehicle ride height, track width, wheelbase, and others, making it possible to evaluate the vehicle’s behavior and allowing for prior validation of the design, thus contributing to improved vehicle safety and performance. In this context, this study presents a lateral dynamic model of a Formula 4WD vehicle with in-wheel motors, enabling the simulation and analysis of the vehicle’s behavior in cornering maneuvers. To achieve this, the complete lateral model is developed using MATLAB Simulink as the platform, incorporating the semi-empirical Hans Pacejka tire model, calculating yaw moment, and analyzing
Dias, Gabriel Henrique RodriguesAraujo, Lucas MontenegroVitalli, RogérioGuerreiro, Joel FilipeSantos Neto, Pedro José dosDaniel, Gregory BregionEckert, Jony Javorski
This paper presents the design and implementation of a test bench intended for the development and validation of control strategies applied to a hybrid-electric powertrain. The setup combines a 48 V SEG BRM electric machine with a small-displacement internal combustion engine (ICE), the HONDA GX160, operating in a parallel hybrid configuration. The platform was developed to improve energy efficiency in comparison to a conventional ICE-only system. Modifications were carried out on an existing test bench at Instituto Mauá de Tecnologia, including the fabrication of a new enclosure for the battery pack and its battery management system (BMS), as well as the integration of a Vector VN8911 real-time controller. A custom control strategy was implemented and experimentally evaluated using a predefined drive cycle under two conditions: (I) ICE-only operation and (II) hybrid-electric operation with the proposed strategy. Results showed a fuel consumption reduction of approximately 13% with the
Polizio, YuriZabeu, ClaytonPasquale, GianPinheiro, GiovanaVieira, Renato
The road transport mode is predominant in Brazil, representing more than 50% of greenhouse gas (GHG) emissions from energy sector [1]. Currently, trucks use internal compression combustion engine (ICCE) with fuel Diesel as propulsion, considering the reference for technical and economic studies for alternative propulsions such as: electrification or hydrogen (H2) as fuel. Both technologies are extremely important to achieve the goals defined by Brazilian nationally determined contribution (NDC) (commitment to Paris agreement target) to avoid climate changes catastrophic issues due climate temperature risk to exceed 2°C. In addition, several companies have announced sustainability compromises to contribute with reduction of GHG emissions in scopes 1,2 and 3, focusing on Environmental, Social and governance (ESG), where road transportation has a larger contribution to achieving the target. Contran Resolution (CR) n° 882/2021 defines the maximum weights and dimensions of vehicles to be
Ferreira, Bruno FranciscoOliveira Da Silva, Laura de
With the implementation of increasingly stringent regulations for pollutant emissions, such as Proconve L8 [1], which requires a 37% reduction in NOx and non-methane organic gases (NMOG) emissions for light passenger vehicles compared to previous regulations, the automotive engineering community is constantly evolving to develop prediction models that are capable of predicting the performance of Internal Combustion Engines (ICE). With this, the society search solutions to increase fuel conversion efficiency and reduce fuel emissions. In a special case, related to the study of the turbulent jet ignition (TJI) engine, there was a need to develop a refined numerical model that allows for the accurate design of the ignition pre-chamber geometry. In view of this, a one-dimensional modeling was carried out in the GT-SUITE ® software, in its modeling environment for Internal Combustion Engines (ICE), GT-POWER ®, with the objective of determining its ideal volume, parameters such as internal
Silva, Arthur MedeirosSouza, Ediwaldo Júnio deRocha, Hiago Tenório Teixeira SantanaFilho, Fernando Antônio RodriguesGuzzo, Márcio ExpeditoOliveira, Wender Pereira deBaeta, José Guilherme Coelho
Fused filament fabrication (FFF) 3D printing has proven to be an affordable method for producing customized and lightweight parts and an accessible method to validate new composite materials. As a rapid prototyping method, it can be used to manufacture and replace defective and/or damaged parts in places with limited infrastructure or logistical support. However, the layer-by-layer deposition inherent to the FFF process introduces anisotropy and residual stresses, which can compromise part performance under high temperatures or vibrational loads. This article aims to analyze the failure of a 3D printed intake runner and address the problems found. The analyzed part was 3D printed in acrylonitrile butadiene styrene (ABS), which had a high volumetric contraction during the printing process. Although ABS exhibits a high heat deflection temperature (HDT) compared to other polymers, prolonged exposure to elevated temperatures during operation led to unintentional embrittlement, reducing
Oliveira, Vinícius deHoriuchi, Lucas NaoMagalhaes, GabrielAlcantara, Nathan deGonçalves, Ana PaulaSouza, MarianaPolkowski, Rodrigo
The aviation sector currently accounts for 2-3% of global Greenhouse Gas (GHG) emissions, while the projected increased air travel demand (average 3.4% per year), might surge the aviation fuel use. This increase in jet fuel demand, associated with the current decarbonization pathway of other sectors might increase the aviation’s absolute emissions, as well as its relative global GHG share. This scenario has driven the aviation stakeholders into a decarbonization strategy, focused on an immediate and gradual GHG reduction effort associated with a net-zero commitment by 2050. Meanwhile, the aviation sector is known as one that set most difficulties to use alternative fuels and/or powertrains, such as battery electric or sustainable hydrogen fueled propulsion systems, already used on some road and rail applications, but still restricted to the aviation, due to the inherent weight and volume tight requirements. In this context, the sustainable aviation fuels (SAF) are set as the most
Barbosa, Fábio Coelho
Process mining emerges as a very important tool in the automotive industry to improve processes and increase efficiency. Its use allows the identification of bottlenecks and opportunities for improvement in production processes, contributing to increased productivity and cost reduction. This article aimed to evaluate the benefits of applying the Process Mining tool by conducting a Three-way match analysis in the Procure-to-pay (PTP) process of a company in the auto parts sector, seeking to identify opportunities for improvement. Analysis using process mining in PTP of the organization allowed us to identify significant number of cases of price discrepancies were observed in relation to orders related to services, being 2.5 times higher than orders related to materials. Additionally, quantity discrepancies represented 24% of the cases analyzed, compared to only 1.5% of price discrepancies. Of the materials involved in these price discrepancies, approximately 63% were not registered in
Junior, Osvaldo Vicente JardimCampos, Renato deFranco, Bruno Chaves
Additive manufacturing is one of the pillars of technologies of the industry 4.0 and enables rapid prototyping, testing of new materials, and customized manufacturing of parts with personalized design. Poly(lactic acid) (PLA) is a bio-based and biodegradable polymer that is used in packaging, medical applications, and consumer goods. However, it presents low mechanical strength and thermal stability, which limits its use in automotive parts. The use of reinforcement materials such as cellulose nanofibers (CNF) aim to increase the mechanical strength and thermal stability of PLA without reducing its ecological appeal. However, the addition of nanofibers in the 3D printing process can lead to reproducibility problems and constant clogging of the extruder nozzle due to the material’s lower printability. These difficulties may restrict its application to industrial processes due to reduced productivity. To address the challenges in the production of automotive parts with PLA/CNF composites
Oliveira, ViníciusHoriuchi, Lucas NaoGonçalves, Ana PaulaSouza, MarianaPolkowski, Rodrigo