Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 721

Recently Published

Browse All
This SAE Recommended Practice provides test procedures, requirements, and guidelines for high-mounted stop lamps and high-mounted turn signal lamps intended for use on vehicles 2032 mm or more in overall width. This document applies to trucks, motor coaches, van type trailers, and other vehicles with permanent structure greater than 2800 mm high. This document does not apply to school buses, truck tractors, pole trailers, flat-bed trailers, pick-up trucks with dual wheels, and trailer converter dollies. The purpose of the high-mounted stop lamp(s) and high-mounted turn signal lamp(s) is to provide a signal to the driver of following (approaching a signaling vehicle from the rear) or oncoming (approaching a signaling vehicle from the front) vehicles over intervening vehicles.
Heavy Duty Lighting Standards Committee
This specification covers an aluminum alloy in the form of alclad sheet and plate 0.020 to 0.500 inch (0.508 to 12.70 mm), inclusive, in thickness, supplied in the -T361 temper (see 8.5).
AMS D Nonferrous Alloys Committee
This SAE Aerospace Standard defines a typical coupling (with different fitting end styles), which is used in typical cone connection fittings installed in high-pressure (up to 3000 psi) oxygen systems for the purpose of mating to applicable oxygen equipment. Dimensions are developed from AND10089 and AS4375.
A-10 Aircraft Oxygen Equipment Committee
This document provides vehicle-level data collection, data analysis, and data verification procedures that may be used to verify that an instrument under test (IUT) satisfies the vehicle-level requirements specified in SAE J3161/1. For the purposes of this report, “vehicle-level requirements” primarily consist of those requirements which can be verified external to the vehicle. The IUT for these procedures is a configured LTE-V2X vehicle-to-vehicle (V2V) device as defined in SAE J3161/1 and is installed on a vehicle of class 2, 3, 4, or 5. While the IUT is conceptually separated from the vehicle it is installed on, the tests outlined in this document are primarily vehicle level, so the terms “vehicle” and “IUT” can generally be considered interchangeable. Additionally, non-vehicle-level complementary tests, not included in this document, are required to verify that the entire set of requirements specified in SAE J3161/1 is satisfied. This document also includes a Traceability Matrix to
C-V2X Technical Committee
This specification covers a titanium alloy in the form of bars up through 4.000 inches (101.60 mm) in nominal diameter or least distance between parallel sides, inclusive, and stock for forging of any size (see 8.7).
AMS G Titanium and Refractory Metals Committee
This specification covers an aluminum alloy in the form of sheet and plate, alclad both sides, supplied in the -T361 temper.
AMS D Nonferrous Alloys Committee
This specification covers one type of copper-beryllium alloy in the form of sheet, strip, and plate (see 8.6).
AMS D Nonferrous Alloys Committee
As internal combustion engines are replaced by quieter electric motors in ground vehicles, noise and vibration sources aside from the powertrain have become relatively more important. This is especially true of tires. Measurement of the dynamic vibratory characteristics of tires is critical to understanding their influence on the noise and vibration performance of vehicles, both outside the vehicle body and inside of it. In this work, the normal modes and operating deflection shapes of a Yokohama Geolander A/T light truck tire are measured using traditional modal analysis techniques as well as a non-contact Scanning Laser Doppler Vibrometry (SLDV) approach. Boundary conditions including free, fixed, loaded, and rotating are implemented to the tire and investigated. Rotating conditions are accomplished in a physical chassis dynamometer environment, with the measured tire mounted on the front axle of a Chevrolet Silverado 1500 pickup truck. Modes of vibration and associated natural
Bastiaan, Jennifer M.Chauda, GauravBaqersad, JavadGupta, ArjunDhami, Kevalya
Recent literature has highlighted significant heat transfer losses and elevated particle formation in direct-injection hydrogen engines, particularly when compared to hydrocarbon fuels such as methane. These challenges are attributed to hydrogen’s unique physicochemical properties, notably its short flame quenching distance and high diffusivity, as well as the interaction between the hydrogen jet and lubricated cylinder surfaces, which promotes lubricant entrainment into the combustion chamber. Consequently, a fundamental understanding of these entrainment mechanisms is a prerequisite for developing engineering strategies to enhance thermal efficiency and mitigate particle formation. The reported study investigates gaseous jet–air interaction in a confined volume to elucidate the influence of injector geometry on jet propagation and air entrainment. Three distinct jet configurations were examined: the wide hollow-cone, the narrow hollow-cone, and the round jets. The jet evolution and
Ben David Holtzer, Ben BinyaminTartakovsky, Leonid
The vibrating half-car model is used to represent the dynamic behavior of a truck’s dependent suspension system, capturing four degrees of freedom. This research investigates time and frequency responses of vibration behavior of half-car model with possible tire–road separation. This investigation is significant because all previously reported analyses based on the tire-road attachment were incorrect, particularly regarding the tire-road separation phenomenon. The differential equations are extended to enhance the accuracy of the model, incorporating tire–road separation conditions for both wheels. A numerical approach is applied to simulate the vertical and roll dynamics of the system under the separation assumption. The simulation results are validated through experiments conducted using ADAMS View software. Integrating the tire–road separation into the model results in dynamic responses that closely reflect real-world behavior. These findings provide valuable guidance for designing
Nguyen, Quy DangJazar, Reza
This SAE Standard provides test procedures for air and air-over-hydraulic disc or drum brakes used for on-highway commercial vehicles over 4536 kg (10000 pounds) GVWR. This recommended practice includes the pass/fail criteria of Federal Motor Vehicle Safety Standard No. TP-121D-01.
Truck and Bus Foundation Brake Committee
AE-8C2 Terminating Devices and Tooling Committee
SCOPE IS UNAVAILABLE.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This specification covers a coating consisting of tungsten disulfide without binders and does not require a curing process.
AMS B Finishes Processes and Fluids Committee
This specification covers a magnesium alloy in the form of extruded bars, rods, wire, tubing, and profiles.
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of hand forgings up to 8 inches (203 mm), inclusive, in nominal thickness and a cross-sectional area not over 256 square inches (1652 cm2) and rolled rings up to 3.5 inches (89 mm), inclusive, in nominal thickness and with an OD to wall thickness ratio of 10:1 or greater (see 8.6).
AMS D Nonferrous Alloys Committee