Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 710

Recently Published

Browse All
This paper attempts to introduce a unique water transport system by using open-bottomed air tanks in a water transport vehicle and using horizontal buoyancy instead of vertical buoyancy. This study explains how a certain amount of horizontal buoyancy is generated by attaching open-bottomed air vessels to commonly used small watercraft. In contrast to the fact that vehicles generally require a lot of water for all water transport, this new mode of transport can use a minimal amount of water, as appropriate for the weight, through a sufficient literature survey. The proposed water–air–based vehicle integrates open-bottomed air vessels with a hydrofoil system to generate horizontal propulsion. A model analysis is conducted to explain how the horizontal buoyancy force generated by the air vessels is related to the vertical buoyancy force, and their values at different depths are tabulated. The vehicle model can achieve a maximum speed of 1.5 m/s, handling 20–70 kg payload, highlighting
Santhiyagu, Arulanantha Samy
2024–2025 Reviewers
Pilla, Srikanth
This AIR is limited to the testing of an extra-high strength copper alloy and benchmark conductors utilizing the test protocol of AS6324. All samples are 19 strand unilay conductors per AS29606 at 24 or 26 AWG, either nickel or silver coated. At 24 AWG, extra-high strength copper alloy is compared to high strength copper alloy conductors. At 26 AWG, extra-high strength copper alloy is compared to high strength copper alloy and ultrahigh strength copper alloy conductors.
AE-8D Wire and Cable Committee
Aircraft operations during landing or takeoff depend strongly on runway surface conditions. Safe runway operations depend on the tire-to-runway frictional force and the drag offered by the aircraft. In the present research article, a methodology is developed to estimate the braking friction coefficient for varied runway conditions accurately in real-time. To this end, the extended Kalman filtering technique (EKF) is applied to sensor-measured data using the on-ground mathematical model of aircraft and wheel dynamics. The aircraft velocity and wheel angular velocity are formulated as system states, and the friction coefficient is estimated as an augmented state. The relation between the friction coefficient and wheel slip ratio is established using both simulated and actual ground roll data. Also, the technique is evaluated with the simulated data as well as real aircraft taxi data. The accuracy of friction estimation, with and without the measurement of normal reaction force on the
T.K., Khadeeja NusrathSingh, Jatinder
This SAE Standard defines the method for deriving and verifying the peening intensity exerted onto a part surface during shot peening or other surface enhancement processes.
Surface Enhancement Committee
This SAE AIR covers Forced Air technology including: reference material, equipment, safety, operation, and methodology. It is intended to provide pressure and temperature (temps pages 26 & 31) information and minimum safety guidelines regarding use of equipment to remove frozen contaminants related to: i) Forced air ii) Forced air/fluid iii) Deicing fluid
G-12M Methods Committee
This information report covers all known aircraft with respect to deicing operations, especially with regard to OEM pressure and temperature limitations on the airframe. It provides data for airlines/operators on compliance with OEM limits and confirms that OEM limits are not exceeded during deicing operations.
G-12M Methods Committee
This study develops deep learning (DL) long–short-term memory (LSTM) models to predict tailpipe nitrogen oxides (NOx) emissions using real-driving on-road data from a heavy-duty Class 8 truck. The dataset comprises over 4 million data points collected across 11,000 km of driving under diverse road, weather, and load conditions. The effects of dataset size, model complexity, and input feature set on model performance are investigated, with the largest training dataset containing around 3.5 million data points and the most complex model consisting of over 0.5 million parameters. Results show that a large and diverse training dataset is essential for achieving accurate prediction of both instantaneous and cumulative NOx emissions. Increasing model complexity only enhances model performance to a certain extent, depending on the size of the training dataset. The best-performing model developed in this study achieves an R2 higher than 0.9 for instantaneous NOx emissions and less than a 2
Shahpouri, SaeidJiang, LuoKoch, Charles RobertShahbakhti, Mahdi
This SAE Recommended Practice is derived from the FMVSS 105 vehicle test and applies to two-axle multipurpose passenger vehicles, trucks, and buses with a GVWR above 4540 kg (10000 pounds) equipped with hydraulic service brakes. There are two main test sequences: the Development Test Sequence for generic test conditions when not all information is available or when an assessment of brake output at different inputs is required, and the FMVSS Test Sequence when vehicle parameters for brake pressure as a function of brake pedal input force and vehicle-specific loading and brake distribution are available. The test sequences are derived from the Federal Motor Vehicle Safety Standard 105 (and 121 for optional sections) as single-ended inertia-dynamometer test procedures when using the appropriate brake hardware and test parameters. This recommended practice provides Original Equipment Manufacturers (OEMs), brake and component manufacturers, and aftermarket suppliers with results related to
Truck and Bus Hydraulic Brake Committee
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Standard covers cold drawn and annealed seamless low-carbon steel pressure tubing intended for use as hydraulic lines and in other applications requiring tubing of a quality suitable for flaring and bending. In an effort to standardize within a global marketplace and ensuring that companies can remain competitive in an international market it is the intent to convert to metric tube sizes which will: Lead to one global system Guide users to preferred system Reduce complexity Eliminate inventory duplications
Metallic Tubing Committee
The following schematic diagrams reflect various methods of illustrating automotive transmission arrangements. These have been developed to facilitate a clear understanding of the functional interrelations of the gearing, clutches, hydrodynamic drive unit, and other transmission components. Two variations of transmission diagrams are used: in neutral (clutches not applied) and in gear. For illustrative purposes, some typical transmissions are shown.
Automatic Transmission and Transaxle Committee
This specification covers a corrosion-resistant steel in the form of investment castings, solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
SAE J1978-2 specifies a complementary set of functions to be provided by an OBD-II scan tool. These functions provide complete, efficient access to all regulated OBD services on any vehicle that is compliant with SAE J1979-2 and SAE J1979-3. The content of this document is intended to satisfy the requirements of an OBD-II scan tool as required by current U.S. OBD regulations. This document specifies: A means of establishing communications between an OBD-equipped vehicle and an OBD-II scan tool. A set of diagnostic services to be provided by an OBD-II scan tool in order to exercise the services defined in SAE J1979-2 and SAE J1979-3. In addition, SAE J1978-1 covers first generation protocol functionality defined in SAE J1979 plus automatic protocol determination for all SAE J1979/J1979-2/J1979-3 application content. The presentation of the SAE J1978 document family, where SAE J1978-2 covers second generation protocol functionality defined in SAE J1979-2 and SAE J1979-3, and SAE J1978-1
Vehicle E E System Diagnostic Standards Committee
The aircraft environmental envelope, also known as the temperature-altitude envelope, is an important design basis and verification benchmark for aircraft structure and system design, as well as the environmental tolerance of airborne equipments. It is also one of the important operational restrictions required by airworthiness regulations for civil aircraft. This article proposes guiding principles and methods for the design of typical aircraft environmental envelope by constructing a model that matches the atmospheric environment model with the aircraft design constraints, providing reference for the design of environmental envelope for civil aircraft models.
Yang, Yang
It is necessary to save fuel, shorten flight time and reduce cost in order to achieve maximum economic benefits. In this paper, based on the flight performance of aircraft, a database based on the optimal index of fuel saving is established, and the corresponding four dimension (4D) trajectory prediction information and vertical profile are generated on this basis. Finally, the vertical guidance simulation is carried out to verify the effectiveness of the algorithm. The algorithm can reduce air traffic congestion and improve airport operation efficiency while saving fuel.
Hui, HuihuiLi, Zhiyi
In the future battlefield, logistics UAVs will play an increasingly important role. The development of logistics UAVs abroad is rapid. Sort out the current development status of logistics UAVs in countries such as the United States, Russia, Israel, and Ukraine, including mission tasks, functional characteristics, and main performance indicators. In addition, the future technological trends of logistics UAVs are studied and predicted. Firstly, diversification of functions, which logistics UAVs will achieve diversified functions in the future, such as material transportation, aerial refueling, unmanned mother aircraft, and transfer of wounded personnel; Secondly, intelligent commendation and control, which logistics UAVs pursue the optimal efficiency in the four steps of ordering, dispatching, delivering, and evaluating in the “food delivery” mode; Finally, resource collaboration. In the collaborative logistics mode of “free riding”, logistics UAVs over a wide area are interconnected
Zhai, JundaLiu, DaweiBai, QiangqiangHua, JinxingWang, XiaoyueYang, JianZou, XiaoyingGao, Yuxuan