Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 709

Recently Published

Browse All
This document provides basic information that should be considered when an aircraft tire is needed for a new application. These guidelines are harmonized with existing regulatory and SAE documents and with the Care and Service Manuals of the tire manufacturers. In general, they should be pertinent to both civil and military aircraft.
null, null
To further improve the smoothness and robustness of lateral trajectory tracking for intelligent vehicles under complex operating conditions, this study proposes and experimentally validates a fuzzy adaptive dynamic model predictive control (FADMPC) strategy on the basis of model predictive control (MPC) framework. Thereinto, a three-degrees-of-freedom vehicle dynamics model serves as the predictive model, and a recursive least-squares algorithm with a forgetting factor is used to estimate tire cornering stiffness, thereby improving model fidelity. A whale optimization algorithm (WOA)–based adaptive horizon scheduler is devised to address the sensitivity of the prediction horizon to vehicle speed and road friction, and a fuzzy regulator adjusts the weight on the lateral displacement error in the objective function in real time. Hardware-in-the-loop tests on jointed and split-road surfaces show that compared with adaptive dynamic MPC, traditional MPC, and linear quadratic regulator, the
Teng, FeiJin, LiqiangWang, JunnianYang, ChenFan, JiapengQiu, NengLi, AndongZhou, Yanbo
For the sustainable development of human society, energy saving, emission reduction, and carbon reduction are urgent challenges to be addressed in the energy industry. As a power device for energy conversion in the transportation sector, the internal combustion engine also needs to enhance its thermal efficiency while cutting pollutant emissions. To meet the current stringent requirements, lean combustion has been widely studied as an effective strategy. However, the ignition difficulty resulting from lean burn needs to be addressed. As a high-energy ignition system, the prechamber turbulent jet ignition can accelerate in-cylinder combustion, thereby enhancing engine efficiency and reducing emissions. Thus, it is considered a promising technology. This review reveals efforts to apply prechamber ignition systems to optimize combustion in the engine characterized by low-carbon fuels and low-emission features. First, this article briefly introduces the evolution of the prechamber
Bai, XiujuanZheng, Dayuan
This specification covers the requirements for electrodeposited hard chromium plate.
null, null
This specification defines the requirements for A286 CRES T-bolts and eye bolts, with room temperature tensile strength of a minimum of 160000 psi, for use with clamps and V-band couplings at 1000 °F maximum ambient temperature.
null, null
As demand for microcomponents has escalated in diverse areas of automotive, medicine, communications, electronics, optics, biotechnology, and avionics industries, there is a need for hybrid manufacturing techniques that can effectively micromachine hard and brittle materials. Electrochemical discharge machining (ECDM) is an advanced manufacturing process for machining difficult-to-cut materials. With a need for precision and accuracy, tool kinematics is a potential research area in ECDM for achieving geometrical dimensioning and tolerances (GD&T). Therefore, the present study reviews the ultrasonic vibration–assisted ECDM (UA-ECDM) hybrid process and the performance of its process parameters (voltage, electrolyte type and its concentration, electrode material, pulse duration, and amplitude) on the material removal rate (MRR), tool electrode wear (TEW), surface integrity, and difficult-to-cut materials. Also, the present work mentions current problems (debris and bubbles trapped
Prajapati, Mehul S.Lalwani, Devdas I.
This standard establishes processes for performing and documenting mitigation steps taken to reduce the harmful effects of tin whiskers in electronic systems for ADHP applications. This includes electronic piece parts and mechanical hardware that are used on or in the proximity of electronics. This document identifies the requirements for mitigating the effects of tin whiskers applicable to the requirements of the SAE GEIA-STD-0005-1 Lead-free Control Plan (LFCP). An LFCP documents the specific Pb-free materials and assembly processes the LFCP owner will use to eliminate or mitigate the Pb-free risks to assure customers that their ADHP soldered electronic products will meet the applicable reliability requirements of the customer. This standard may also be used independently of SAE GEIA-STD-0005-1.
null, null
The intent of this specification is for the procurement of the material listed on the QPL; therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program must refer to the Quality Assurance section of the base specification, AMS6891.
null, null
This SAE Recommended Practice provides guidelines for the use, performance, installation, activation, and switching of marking lamps on Automated Driving System (ADS) equipped vehicles.
null, null
The SAE J3211 procedure applies to squeal evaluation for foundation brakes using single-ended inertia dynamometers for friction couples used on vehicles with regenerative braking systems. This document applies to squeal noise occurrences for on-road passenger cars and light trucks with a gross vehicle weight rating of 4536 kg or below and with at least one rechargeable energy storage system as a source for propulsion. The procedure incorporates aspects related to (a) minimum inertia dynamometer capabilities, (b) fixture requirements and setup, and (c) test sequences with emphasis on brake temperatures, brake pressure profiles, and strategies to represent brake blending. For this document, squeal occurs when the peak noise level is at least 70 dB(A) between 1.25 and 16 kHz for tests using full suspension corners or complete axle assemblies, or between 2 and 16 kHz for brakes not using an entire suspension corner. Test facilities intending to use this document, building on their
null, null
This SAE Recommended Practice was developed primarily for passenger car and truck applications but may be used in marine, industrial, and similar applications.
null, null
This specification covers established manufacturing tolerances applicable to titanium and titanium alloy extruded bars, rods, and shapes. These tolerances apply to all conditions, unless otherwise noted. The term “excl” applies only to the higher figure of the specified range.
null, null