Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 721

Recently Published

Browse All
This specification covers an aluminum alloy in the form of alclad sheet and plate 0.020 to 0.500 inch (0.508 to 12.70 mm), inclusive, in thickness, supplied in the -T361 temper (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers the requirements for an inorganic blackening solution for steel, applied at room temperature.
AMS B Finishes Processes and Fluids Committee
This specification covers a corrosion-resistant steel product in the solution and precipitation heat-treated (H1025) condition, 4 inches (102 mm) and under in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This Aerospace Information Report (AIR) has been written to provide in-service reliability data of continuously active ball screw and geared flight control actuation systems.
A-6B3 Electro-Mechanical Actuation Committee
The purpose of this study was to evaluate the thoracic responses of the 50th-percenitle male Hybrid III, THOR, and post mortem human surrogates (PMHS) in the rear seat during frontal sled tests using conventional and advanced restraints in multiple vehicle environments. Twenty-one sled tests were conducted using the Hybrid III and THOR in seven vehicle bucks, and 12 PMHS sled tests were performed using four vehicle bucks. Trends in chest deflections between vehicles and restraint conditions were compared between surrogates. The Hybrid III and THOR thoracic injury risk predictions were compared to the thoracic skeletal damage observed during the PMHS tests. The Hybrid III chest deflections were statistically significantly greater for vehicles equipped with conventional restraints compared to those equipped with advanced restraints. The THOR chest deflections generally followed this trend, but the differences between restraint types were not statistically significant. Hence, the THOR
Albert, Devon L.Bianco, Samuel T.Guettler, Allison J.Boyle, David M.Kemper, Andrew R.Hardy, Warren N.
SCOPE IS UNAVAILABLE.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This document is to be used as a checklist by curriculum developers to create courses or training for critical composite repair, maintenance, and overhaul issues. This document will not take the place of courses or training requirements for specific job roles of a composite repair technician, inspector, or engineer.
AMS CACRC Commercial Aircraft Composite Repair Committee
The aim of this study is to develop a methodology to significantly reduce emissions in bus fleet renewal scenarios by investigating both technical and economic aspects. This work presents a case study based on Elba Island, Italy, which investigates optimal solutions for replacing existing Diesel buses through a total cost of ownership analysis. The investigation is carried out for four different potential scenarios: renewing the fleet with Diesel buses, renewing the fleet with electric buses, adopting fuel cell buses, and implementing a hybrid solution. The latter represents a synergistic solution that integrates fuel cell buses with the development of a hydrogen refueling station driven by a proton exchange membrane electrolyzer, unlocking the techno-economic potential of self-producing green hydrogen for bus refueling. The novelty of this study is its integrated methodology that combines a total cost of ownership analysis with a tailored design of a green hydrogen production network
Bove, GiovanniSorrentino, MarcoBaldinelli, AriannaDesideri, Umberto
This specification covers an aluminum alloy in the form of sheet and plate, alclad both sides, supplied in the -T361 temper.
AMS D Nonferrous Alloys Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This Aerospace Standard (AS) provides the general requirements for hydraulic components that are used in military aircraft and missile hydraulic systems.
A-6A2 Military Aircraft Committee
The following are suggested policies, procedures, and practices required to maintain mobile and fixed ground support equipment at airport passenger and cargo terminals. The principal purpose for ground support equipment maintenance is to provide the owner/user with safe, serviceable equipment, in good appearance, at minimal cost, and with minimum downtime. Maintenance programs initiated on ground support equipment must also conform to regulations controlling airport operations. This document has been divided into three sections corresponding to the three stages of equipment life; acquisition, maintenance, and disposal.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Recommended Practice applies to mobile cranes when used in lifting crane service that are equipped with boom length indicating devices.
Cranes and Lifting Devices Committee
This SAE Recommended Practice is applicable to all heat exchangers used in vehicle and industrial cooling systems. This document outlines the tests to determine the heat transfer and pressure drop performance of heat exchangers under specified conditions. This document has been reviewed and revised by adding several clarifying statements to Section 4.
Cooling Systems Standards Committee
This document is a guideline for format, structure and content for ground support equipment (GSE) technical manuals. This document focuses on requirements specific to the GSE industry and does not cover general technical publication practices. Additional standards for GSE and for manufacturer’s publications exist and may add requirements beyond what is covered in this standard. This may include EU Directive 2006/42/EC. This document is written in specific terms by intention, and conforms to recognized practices in the industry. When the word SHALL is used in this standard, it indicates a requirement that must be adhered to in total and does not allow for variance. When the word SHOULD is used, it indicates a recommended practice which allows the manual writer to use discretionary judgment. This document does not apply to electronic test equipment.
AGE-3 Aircraft Ground Support Equipment Committee
This study presents the design and implementation of an advanced IoT-enabled, cloud-integrated smart parking system, engineered to address the critical challenges of urban parking management and next-generation mobility. The proposed architecture utilizes a distributed network of ultrasonic and infrared occupancy sensors, each interfaced with a NodeMCU ESP8266 microcontroller, to enable precise, real-time monitoring of individual parking spaces. Sensor data is transmitted via secure MQTT protocol to a centralized cloud platform (AWS IoT Core), where it is aggregated, timestamped, and stored in a NoSQL database for scalable, low-latency access. A key innovation of this system is the integration of artificial intelligence (AI)-based space optimization algorithms, leveraging historical occupancy patterns and predictive analytics (using LSTM neural networks) to dynamically allocate parking spaces and forecast demand. The cloud platform exposes RESTful APIs, facilitating seamless
Deepan Kumar, SadhasivamS, BalakrishnanDhayaneethi, SivajiBoobalan, SaravananAbdul Rahim, Mohamed ArshadS, ManikandanR, JamunaL, Rishi Kannan
Dooring accidents occur when a vehicle door is opened into the path of an approaching cyclist, motorcyclist, or other road user, often causing serious collisions and injuries. These incidents are a major road safety concern, particularly in densely populated urban areas where heavy traffic, narrow roads, and inattentive behavior increase the likelihood of such events. To address this challenge, this project presents an intelligent computer vision based warning system designed to detect approaching vehicles and alert occupants before they open a door. The system can operate using either the existing rear parking camera in a vehicle or a USB webcam in vehicles without such a feature. The captured live video stream is processed by a Raspberry Pi 4 microprocessor, chosen for its compact size, low power consumption, and ability to support machine learning frameworks. The video feed is analyzed in real time using MobileNetSSD, a lightweight deep learning object detection model optimized
C, JegadheesanT, KarthiGurusamy, Varun SankarBalraj, TharunMurugaiya, Tamilselvan
The growing awareness about sustainability and environmental concerns are accelerating the adoption of electric vehicles. They play a promising role due to their potential to significantly reduce greenhouse gas emissions, improve air quality and lessen reliance on fossil fuels. However, one of the primary concerns for potential buyers is the charging process and infrastructure. Traditional wired charging systems for electric vehicles face limitations such as user inconvenience, wear and tear of connectors and challenges in automation. A wireless electric vehicle charging offers more user-friendly, automated and contactless method by eliminating the need for physical connectors. However, wireless inductive charging suffers from relatively low efficiency due to higher energy losses. Whereas resonant coupling significantly improves efficiency by using electromagnetic resonance to transfer power more effectively over short distances. This paper mainly focuses on design and implementation
Shaik, AmjadGudipati, Ravi Sai HemanthB, Vikranth ReddyAnudeep, D B S SVarshith, Dasari
The paper presents the design and implementation of an AI-enabled smart timer-based power control and energy monitoring solution for household appliances. The proposed system integrates real-time sensing of electrical device parameters with cloud artificial intelligence for predictive analytics and automatic control. Continuous measurement of voltage, current and power consumption of the connected appliances are performed for analysis of the usage patterns. The appliance operation is completely automated by choosing between the best option which is the user-defined schedule or the load shifted schedule recommended by AI. The AI recommendation depends on peak demand of the day and the current load requirement thereby aiding approximate smoothening of daily load curve and improving load factor. The data collected is transmitted to the cloud for real-time and historical data collection, for prediction of consumption patterns, anomaly detection, and clustering appliances according to their
D, AnithaD, SuchitraJain, UtsavMaity, SouvikDinda, Atish
This study investigates the parameter optimization of a Rear Twist Beam (RTB) for an electric vehicle (EV) during the early stages of product development. Adapting an RTB design from an Internal Combustion Engine (ICE) vehicle platform presents several challenges, one of the challenges is accommodating increased rear vehicle load while minimizing cost, with maintaining existing rear hard points. To address this, we employed an experimental study for Computer-Aided Engineering (CAE) using the Taguchi DOE, which avoids costly physical durability tests. The key design parameters considered were the thickness and material grade of the RTB's components, specifically the cross beam, trailing arms, and reinforcements while preserving their original shapes. L8 Orthogonal array is constructed to design the experiment and identify the influence of the design parameters on durability performance, and the optimal combinations for maximizing durability are identified by using TOPSIS multi objective
Madaswamy, ArunachalamDhanraj, SudharsunGovindaraju, KarthikLokaiah, Srinivasan
All automotive vehicles with enclosed compartments must pass the shower test standard - IS 11865 (2006). One of the most severe and critical areas of water leakage is “water entry into HVAC (heating, ventilation, and air conditioning) opening”. Excess water flow at high-pressure conditions and seepage during long-time low-pressure conditions could potentially have a significant impact on water entry inside the HVAC suction cutout given on BIW (body in white) and subsequently into the cabin. The present study clearly indicates that for making leak proof HVAC opening (suction interface), it is crucial for the structure of BIW plenum, plenum applique, and its sealing components to be robust enough to effectively collect and divert the water during rainy seasons.
Gunasekaran, MohanrajNamani, PrasadRamaraj, RajasekarJunankar, AshishRaju, Kumar
In the context of electro-mobility for commercial vehicles, the failure analysis of a connector panel in a DCDC converter is crucial, particularly regarding crack initiation at the interface of busbar and plastic component. This analysis requires a thorough understanding of thermo-mechanical behavior under thermal cyclic loads, necessitating kinematic hardening material modeling to account for the Bauschinger effect. As low cycle fatigue (LCF) test data is not available for glass fiber reinforced polyamide based thermoplastic composite (PA66GF), we have adopted a novel approach of determining non-linear Chaboche Non-Linear Kinematic Hardening (NLK) model parameters from monotonic uniaxial temperature dependent tensile test data of PA66GF. In this proposed work a detailed discussion has been presented on manual calibration and Genetic Algorithm (GA) based optimization of Chaboche parameters. Due to lack of fiber orientation dependent test data for PA66GF, here von Mises yield criteria
Basu, ParichaySrinivasappa, Naveen
Mining operations are important to industrial growth, but they expose the mining workers to risk including hazardous gases, elevated ambient temperatures, and dynamic structural instabilities within underground environments. Safety systems in the past, typically based on fixed sensor networks or manual patrols, fall short in accurate hazard detection amidst shifting mine conditions. The proposed project Miner's Safety Bot advanced this paradigm by leveraging an ESP 32 microcontroller as a mobile platform that integrates gas sensing, thermal monitoring, visual inspection and autonomous obstacle avoidance. The system incorporates MQ7 semiconductor gas sensor to monitor real time carbon monoxide (CO), offering detection range from 5 to 2000 ppm with accuracy of 5 ppm. Temperature and humidity are monitored through DHT11 digital sensor, calibrated to ensure reliability across the harsh microclimates in mines. Navigation and autonomous movement are enabled by Ultrasonic Sensor (HC-SR04
D, SuchitraD, AnithaMuthukumaran, BalasubramaniamMohanraj, SiddharthSubash Chandra Bose, Rohan