Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 721

Recently Published

Browse All
The purpose of this study was to evaluate the thoracic responses of the 50th-percenitle male Hybrid III, THOR, and post mortem human surrogates (PMHS) in the rear seat during frontal sled tests using conventional and advanced restraints in multiple vehicle environments. Twenty-one sled tests were conducted using the Hybrid III and THOR in seven vehicle bucks, and 12 PMHS sled tests were performed using four vehicle bucks. Trends in chest deflections between vehicles and restraint conditions were compared between surrogates. The Hybrid III and THOR thoracic injury risk predictions were compared to the thoracic skeletal damage observed during the PMHS tests. The Hybrid III chest deflections were statistically significantly greater for vehicles equipped with conventional restraints compared to those equipped with advanced restraints. The THOR chest deflections generally followed this trend, but the differences between restraint types were not statistically significant. Hence, the THOR
Albert, Devon L.Bianco, Samuel T.Guettler, Allison J.Boyle, David M.Kemper, Andrew R.Hardy, Warren N.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
The following are suggested policies, procedures, and practices required to maintain mobile and fixed ground support equipment at airport passenger and cargo terminals. The principal purpose for ground support equipment maintenance is to provide the owner/user with safe, serviceable equipment, in good appearance, at minimal cost, and with minimum downtime. Maintenance programs initiated on ground support equipment must also conform to regulations controlling airport operations. This document has been divided into three sections corresponding to the three stages of equipment life; acquisition, maintenance, and disposal.
AGE-3 Aircraft Ground Support Equipment Committee
This Aerospace Standard (AS) provides the general requirements for hydraulic components that are used in military aircraft and missile hydraulic systems.
A-6A2 Military Aircraft Committee
This SAE Recommended Practice is applicable to all heat exchangers used in vehicle and industrial cooling systems. This document outlines the tests to determine the heat transfer and pressure drop performance of heat exchangers under specified conditions. This document has been reviewed and revised by adding several clarifying statements to Section 4.
Cooling Systems Standards Committee
This document is a guideline for format, structure and content for ground support equipment (GSE) technical manuals. This document focuses on requirements specific to the GSE industry and does not cover general technical publication practices. Additional standards for GSE and for manufacturer’s publications exist and may add requirements beyond what is covered in this standard. This may include EU Directive 2006/42/EC. This document is written in specific terms by intention, and conforms to recognized practices in the industry. When the word SHALL is used in this standard, it indicates a requirement that must be adhered to in total and does not allow for variance. When the word SHOULD is used, it indicates a recommended practice which allows the manual writer to use discretionary judgment. This document does not apply to electronic test equipment.
AGE-3 Aircraft Ground Support Equipment Committee
This study presents the design and implementation of an advanced IoT-enabled, cloud-integrated smart parking system, engineered to address the critical challenges of urban parking management and next-generation mobility. The proposed architecture utilizes a distributed network of ultrasonic and infrared occupancy sensors, each interfaced with a NodeMCU ESP8266 microcontroller, to enable precise, real-time monitoring of individual parking spaces. Sensor data is transmitted via secure MQTT protocol to a centralized cloud platform (AWS IoT Core), where it is aggregated, timestamped, and stored in a NoSQL database for scalable, low-latency access. A key innovation of this system is the integration of artificial intelligence (AI)-based space optimization algorithms, leveraging historical occupancy patterns and predictive analytics (using LSTM neural networks) to dynamically allocate parking spaces and forecast demand. The cloud platform exposes RESTful APIs, facilitating seamless
Deepan Kumar, SadhasivamS, BalakrishnanDhayaneethi, SivajiBoobalan, SaravananAbdul Rahim, Mohamed ArshadS, ManikandanR, JamunaL, Rishi Kannan
Dooring accidents occur when a vehicle door is opened into the path of an approaching cyclist, motorcyclist, or other road user, often causing serious collisions and injuries. These incidents are a major road safety concern, particularly in densely populated urban areas where heavy traffic, narrow roads, and inattentive behavior increase the likelihood of such events. To address this challenge, this project presents an intelligent computer vision based warning system designed to detect approaching vehicles and alert occupants before they open a door. The system can operate using either the existing rear parking camera in a vehicle or a USB webcam in vehicles without such a feature. The captured live video stream is processed by a Raspberry Pi 4 microprocessor, chosen for its compact size, low power consumption, and ability to support machine learning frameworks. The video feed is analyzed in real time using MobileNetSSD, a lightweight deep learning object detection model optimized
C, JegadheesanT, KarthiGurusamy, Varun SankarBalraj, TharunMurugaiya, Tamilselvan
The growing awareness about sustainability and environmental concerns are accelerating the adoption of electric vehicles. They play a promising role due to their potential to significantly reduce greenhouse gas emissions, improve air quality and lessen reliance on fossil fuels. However, one of the primary concerns for potential buyers is the charging process and infrastructure. Traditional wired charging systems for electric vehicles face limitations such as user inconvenience, wear and tear of connectors and challenges in automation. A wireless electric vehicle charging offers more user-friendly, automated and contactless method by eliminating the need for physical connectors. However, wireless inductive charging suffers from relatively low efficiency due to higher energy losses. Whereas resonant coupling significantly improves efficiency by using electromagnetic resonance to transfer power more effectively over short distances. This paper mainly focuses on design and implementation
Shaik, AmjadGudipati, Ravi Sai HemanthB, Vikranth ReddyAnudeep, D B S SVarshith, Dasari
The paper presents the design and implementation of an AI-enabled smart timer-based power control and energy monitoring solution for household appliances. The proposed system integrates real-time sensing of electrical device parameters with cloud artificial intelligence for predictive analytics and automatic control. Continuous measurement of voltage, current and power consumption of the connected appliances are performed for analysis of the usage patterns. The appliance operation is completely automated by choosing between the best option which is the user-defined schedule or the load shifted schedule recommended by AI. The AI recommendation depends on peak demand of the day and the current load requirement thereby aiding approximate smoothening of daily load curve and improving load factor. The data collected is transmitted to the cloud for real-time and historical data collection, for prediction of consumption patterns, anomaly detection, and clustering appliances according to their
D, AnithaD, SuchitraJain, UtsavMaity, SouvikDinda, Atish
This study investigates the parameter optimization of a Rear Twist Beam (RTB) for an electric vehicle (EV) during the early stages of product development. Adapting an RTB design from an Internal Combustion Engine (ICE) vehicle platform presents several challenges, one of the challenges is accommodating increased rear vehicle load while minimizing cost, with maintaining existing rear hard points. To address this, we employed an experimental study for Computer-Aided Engineering (CAE) using the Taguchi DOE, which avoids costly physical durability tests. The key design parameters considered were the thickness and material grade of the RTB's components, specifically the cross beam, trailing arms, and reinforcements while preserving their original shapes. L8 Orthogonal array is constructed to design the experiment and identify the influence of the design parameters on durability performance, and the optimal combinations for maximizing durability are identified by using TOPSIS multi objective
Madaswamy, ArunachalamDhanraj, SudharsunGovindaraju, KarthikLokaiah, Srinivasan
All automotive vehicles with enclosed compartments must pass the shower test standard - IS 11865 (2006). One of the most severe and critical areas of water leakage is “water entry into HVAC (heating, ventilation, and air conditioning) opening”. Excess water flow at high-pressure conditions and seepage during long-time low-pressure conditions could potentially have a significant impact on water entry inside the HVAC suction cutout given on BIW (body in white) and subsequently into the cabin. The present study clearly indicates that for making leak proof HVAC opening (suction interface), it is crucial for the structure of BIW plenum, plenum applique, and its sealing components to be robust enough to effectively collect and divert the water during rainy seasons.
Gunasekaran, MohanrajNamani, PrasadRamaraj, RajasekarJunankar, AshishRaju, Kumar
In the context of electro-mobility for commercial vehicles, the failure analysis of a connector panel in a DCDC converter is crucial, particularly regarding crack initiation at the interface of busbar and plastic component. This analysis requires a thorough understanding of thermo-mechanical behavior under thermal cyclic loads, necessitating kinematic hardening material modeling to account for the Bauschinger effect. As low cycle fatigue (LCF) test data is not available for glass fiber reinforced polyamide based thermoplastic composite (PA66GF), we have adopted a novel approach of determining non-linear Chaboche Non-Linear Kinematic Hardening (NLK) model parameters from monotonic uniaxial temperature dependent tensile test data of PA66GF. In this proposed work a detailed discussion has been presented on manual calibration and Genetic Algorithm (GA) based optimization of Chaboche parameters. Due to lack of fiber orientation dependent test data for PA66GF, here von Mises yield criteria
Basu, ParichaySrinivasappa, Naveen
Mining operations are important to industrial growth, but they expose the mining workers to risk including hazardous gases, elevated ambient temperatures, and dynamic structural instabilities within underground environments. Safety systems in the past, typically based on fixed sensor networks or manual patrols, fall short in accurate hazard detection amidst shifting mine conditions. The proposed project Miner's Safety Bot advanced this paradigm by leveraging an ESP 32 microcontroller as a mobile platform that integrates gas sensing, thermal monitoring, visual inspection and autonomous obstacle avoidance. The system incorporates MQ7 semiconductor gas sensor to monitor real time carbon monoxide (CO), offering detection range from 5 to 2000 ppm with accuracy of 5 ppm. Temperature and humidity are monitored through DHT11 digital sensor, calibrated to ensure reliability across the harsh microclimates in mines. Navigation and autonomous movement are enabled by Ultrasonic Sensor (HC-SR04
D, SuchitraD, AnithaMuthukumaran, BalasubramaniamMohanraj, SiddharthSubash Chandra Bose, Rohan
Unlike traditional voltage source or current source inverters, ZSI/qZSI can boost and invert DC power in a single stage, making them attractive for applications like EVs where battery voltage may vary. Common mode Voltage (CMV) is the voltage between the neutral point of the motor and ground. High CMV in motor drive systems can cause: Higher leakage currents, Electromagnetic interference (EMI), Insulation stress, bearing currents, leading to premature motor failure. Reducing CMV is essential for reliable and safe EV operation. Pulse-width modulation (PWM) is used to control the QZSI output voltage. The QZSI offers several advantages over traditional inverters, including improved efficiency, reduced cost, and increased reliability. The proposed system is designed to reduce the CMV through a combination of passive LC filtering and shoot-through (ST) modulation techniques. The LC filter is designed to attenuate high-frequency components of the CMV while the ST modulation is used to
N, KalaiarasiR, RajarajeswariD, Anitha
Internal combustion engines generate intense acoustic pulses during combustion, necessitating the use of exhaust mufflers to suppress noise emissions. With evolving regulations on permissible noise levels and the automotive industry's drive toward lightweight, high-performance vehicles, muffler designs must balance effective sound attenuation, minimal back pressure, and reduced mass. This study presents a comparative analysis of three muffler configurations serpentine, rectangular, and zigzag designed using Solid Works for a light commercial vehicle (LCV) diesel engine. The models were evaluated using computational fluid dynamics (CFD) simulations to assess their acoustic and flow performance. Each design incorporated internal baffle arrangements to enhance sound absorption while aiming to minimize back pressure. The serpentine model featured a perforated baffle layout that promoted multiple reflections and dissipated acoustic energy more efficiently. Simulation results indicated that
Deepan Kumar, SadhasivamPalaniselvam, Senthil KumarD, AshokkumarR, KrishnamoorthyMahendran, MPasupuleti, ThejasreeG, DhayanithiL, Boopalan
Due to the rapid transformation of EVs and the battery storage system, the battery management system (BMS) is essential to ensure optimal performance of the battery storage piles. A BMS monitors and controls parameters such as SOC, voltage, current, and temperature. A traditional BMS has a minimum support of analytics, and it’s limited to local processing. However, when the battery information is uploaded to the internet, it becomes easier to manage maintenance and track the battery’s performance from anywhere in the world. This Cloud-based system is easy and made earlier, thereby giving a system alarm before the issue becomes big. Managing many batteries at once saves a significant amount of money in places like EV charging stations and Energy Storage Systems (BESS). Software updates to the system can also be sent remotely. Also, a BMS connected to the cloud can be used to support weaker grids in an instant if it needs the reactive power support. Cloud integration of BMS with the grid
R, RajarajeswariN, KalaiarasiFrancis, Elgin Calister
This paper presents the design, development, and validation of an Advanced Rider Assistance System (ARAS) tailored for electric motorcycles, with a specific focus on a Level-1 collision-avoidance and emergency-braking prototype employing ultrasonic sensing. The study is motivated by the disproportionately high accident exposure of two-wheeler riders and the slow adoption of ARAS technologies relative to the well-established Advanced Driver Assistance Systems (ADAS) in passenger vehicles. The proposed system utilizes front and rear ultrasonic sensors operating at 40 kHz, offering a measurement range of 2 cm to 4 m with ±1% accuracy, and maintaining reliable performance at motorcycle lean angles of up to 30°. Sensor data are processed using an STM32-series microcontroller running a real-time collision-risk estimation algorithm based on obstacle distance and relative velocity. A configurable safety threshold (typically 3 m) initiates a hierarchical warning strategy comprising visual
Deepan Kumar, SadhasivamKaru, RagupathyKarthick, K NR, Vishnu Ramesh KumarKumar, VManojkumar, RM, KarthickM, Rishab
This research paper provides a comprehensive study on how Artificial Neural Networks (ANNs) can be deployed to predict the stiffness characteristics of a cantilever beam with a crack of various depths and positions. The most destructive source of failure is considered to be vibration, so the major focus of this paper will be on how the cracks affect the modal stiffness. This study has various applications, such as airplane wings, bridges, stadiums, and arenas. A common research gap was noticed amongst the existing studies; the position of the cracks in the cantilever wasn’t considered, but this paper discusses how the location of cracks severely affects the dynamic behaviour of the cantilever. This study was done by carrying out modal analysis on a cantilever of the same dimensions with different crack configurations. Various crack dimensions and orientations were analysed to understand the effects of the crack on the dynamic behaviour of the cantilever. From the modal analysis results
SB, HarshiniRajkumar, ManjariR, KrithikaK, AnushaK, DivyaBhaskara Rao, Lokavarapu
Modern vehicles require sophisticated, secure communication systems to handle the growing complexity of automotive technology. As in-vehicle networks become more integrated with external wireless services, they face increasing cybersecurity vulnerabilities. This paper introduces a specialized Proxy based security architecture designed specifically for Internet Protocol (IP) based communication within vehicles. The framework utilizes proxy servers as security gatekeepers that mediate data exchanges between Electronic Control Units (ECUs) and outside networks. At its foundation, this architecture implements comprehensive traffic management capabilities including filtering, validation, and encryption to ensure only legitimate data traverses the vehicle's internal systems. By embedding proxies within the automotive middleware layer, the framework enables advanced protective measures such as intrusion detection systems, granular access controls, and protected over-the-air (OTA) update
M, ArvindPraneetha, Appana DurgaRemalli, Ravi Teja
As electric vehicles adoption becomes more common, power grid operators are facing new challenges in managing the unpredictable and varying energy demands in the existing electrical infrastructure. Moreover, the cost of Electric vehicle is high when compared to fuel vehicle it has limited access to charging infrastructure along with the driving range that act as a key barrier preventing the drivers from making shift to EVs. When the EV usage integrates with blockchain, it mitigates the limitation in charging station infrastructure along with the former problem discussed. The lack of trust exists between EV owners and charging station providers can be solved through secure and transparent payment processing possible by blockchain based smart contract. Building charging station on blockchain will ease the automated payment through the use of smart contract and create more efficient EV charging network. Also, the blockchain-based charging system would enable EV owners know if they are
Govindasamy, DhivyaR, Rajarajeswari
Emission norms have become much more stringent to reduce emissions from vehicles. Diesel engines in particular are the predominant contributors to higher emissions. Diesel Oxidation Catalyst (DOC) in diesel engine catalytic converter systems is the crucial component in reducing harmful emissions such as Carbon Monoxide (CO) and unburnt Hydrocarbons (HC). DOCs often rely on expensive noble metals like platinum, palladium, and rhodium as catalyst materials. This significantly raises the cost of emission control units. The proposed idea is to explore MnO2-CeO₂ (Manganese Oxide, Cerium Oxide) as an alternative catalyst to traditional DOC materials. The goal is to deliver effective oxidation performance while reducing overall system cost. MnO2-CeO₂ catalysts are promising because of their good low-temperature activity, oxygen storage capacity, and redox behavior. These features are helpful for diesel engines that operate under various conditions. They improve the oxidation of CO and HC
C, JegadheesanT, KarthiRajendran, PawanMuruganantham, KowshiikS, Vaitheeshwaran
As there is a major shift in customer demand for energy efficient transportation, electric vehicle development has taken prominence worldwide as they provide pollution free and noise free mobility. The subframe being an important structural component of the chassis system, the designers always find it challenging to provide best-in-class rear subframe (RSF) optimized in terms of cost and weight within the available packaging space especially in an electric sport vehicular boundary. The main function of rear subframe is to transmit forces to BIW without deflections hence for this it should be very stiff. At the same time, it should be light in weight and simpler to industrialize. In the present work, the design evolution of a novel sub-frame assembly for a multilink rear suspension of a born electric sports utility vehicle (e-SUV) platform is detailed. With increased rear axle weight contributed by the battery weight and rear mounted motor, the design evolution of the rear subframe (RSF
Nidasosi, Basavraj MarutiJ, RamkumarNayak, BhargavMani, ArunM, Sudhan
Electric Vehicles (EVs) are rapidly transforming the automotive landscape, offering a cleaner and more sustainable alternative to internal combustion engine vehicles. As EV adoption grows, optimizing energy consumption becomes critical to enhancing vehicle efficiency and extending driving range. One of the most significant auxiliary loads in EVs is the climate control system, commonly referred to as HVAC (Heating, Ventilation, and Air Conditioning). HVAC systems can consume a substantial portion of the battery's energy—especially under extreme weather conditions—leading to a noticeable reduction in vehicle range. This energy demand poses a challenge for EV manufacturers and users alike, as range anxiety remains a key barrier to widespread EV acceptance. Consequently, developing intelligent climate control strategies is essential to minimize HVAC power consumption without compromising passenger comfort. These strategies may include predictive thermal management, cabin pre-conditioning
Mulamalla, Sarveshwar ReddySV, Master EniyanM, NisshokAnugu, AnilE A, MuhammedGuturu, Sravankumar
As electric vehicles continue to revolutionize transportation, ensuring the reliability of their powertrain systems and Battery Packs has become a critical focus. One key challenge is galvanic corrosion, which occurs when dissimilar metals in contact are exposed to an electrolyte, such as seashore moisture or road salt used in snow or ice zones. This corrosion can weaken structural components, compromise electrical conductivity, and reduce the lifespan of critical systems. Common areas at risk include metallic joints within battery enclosures, busbars, cooling systems, and electrical connectors. Environmental factors such as high humidity and temperature fluctuations further amplify the issue, making it a pressing concern for manufacturers. This paper aims to systematically identify critical galvanic joints within electric powertrain systems and Battery Packs and provide effective strategies to mitigate corrosion risks. Preventative measures include choosing compatible materials with
Narain, AdityaVenugopal, SivakumarGopalan, VijaysankarVaratharajan, Senthilkumaran