Your Destination for Mobility Engineering Resources
Recently Published
Browse AllSAE International extends its heartfelt thanks to Tom Ryan for his dedicated work as Editor-in-Chief of the SAE International Journal of Engines from 2008 to 2025. His vision for SAE allowed and encouraged the establishment of our journals program in 2008. As the SAE president that year, he saw the launch of our first journals, assuming the leadership for this journal, as well as establishing the beginning of our other journals. His dedication has helped to establish the journal as an impactful venue for academics and industry researchers alike. Dr. Ryan has been the leading force behind the SAE International Journal of Engines since its inception and is now retiring at the end of 2025 after an impressive tenure with the journal. Because of his instrumental policies and practices, Dr. Ryan will be listed on the journal as Founding Editor in perpetuity. We offer our thanks and great respect for his efforts, dedication, and leadership throughout the years. Dr. Ryan has been working
The activation of the fuel injector affects both engine performance and pollutant emissions. However, the automotive industry restricts access to information regarding the circuits and control strategies used in its vehicles. One way to optimize fuel injections is using piezoelectric injectors. These injectors utilize crystals that expand or contract when subjected to an electric current, moving the injector needle. They offer a response time up to four times faster than solenoid-type injectors and allow for multiple injections per combustion cycle. These characteristics result in higher combustion efficiency, reduced emissions, and lower noise levels, making piezoelectric injectors widely used in next-generation engines, where stricter emission and efficiency standards are required. This study aims to design a drive circuit for piezoelectric injectors in a common rail system, intended for use in a diesel injector test bench. Experimental measurement of voltage was obtained from an
Lithium-ion batteries (LIBs) have consolidated their place in the technology market for the energetic transition, with global manufacturing capacity exceeding 1 TWh in recent years and costs falling in this competitive environment. At the same time, the number of end-of-life LIBs is increasing, stimulating the recycling industry to process battery streams, thus promoting the circular economy to meet the increased demand for strategic raw materials and decarbonization. Vehicle electrification is the main driver of battery production, but their end-of-life will take some time to be significant in volume in the next years. Consumer electronics such as smartphones, laptops and power tools are now available at an appropriate volume enabling the preparation of recycling industry for the moment. In this scenario, recyclers are looking for sustainable routes to absorb all these streams and the different LIBs chemistries (LFP, NCA, NMC, LCO, LMO) to recover the critical metals (Ni, Co, Cu, Mn
With the implementation of increasingly stringent regulations for pollutant emissions, such as Proconve L8 [1], which requires a 37% reduction in NOx and non-methane organic gases (NMOG) emissions for light passenger vehicles compared to previous regulations, the automotive engineering community is constantly evolving to develop prediction models that are capable of predicting the performance of Internal Combustion Engines (ICE). With this, the society search solutions to increase fuel conversion efficiency and reduce fuel emissions. In a special case, related to the study of the turbulent jet ignition (TJI) engine, there was a need to develop a refined numerical model that allows for the accurate design of the ignition pre-chamber geometry. In view of this, a one-dimensional modeling was carried out in the GT-SUITE ® software, in its modeling environment for Internal Combustion Engines (ICE), GT-POWER ®, with the objective of determining its ideal volume, parameters such as internal
In vehicle development, occupant-centered design is crucial to ensuring customer satisfaction. Key factors such as visibility, access, interior roominess, driver ergonomics, interior storage and trunk space directly impact the daily experience of vehicle occupants. While automakers rely on engineering metrics to guide architectural decisions, however in some cases doesn’t exist a clear correlation between these quantitative parameters and the subjective satisfaction of end users. This study develops a methodology which addresses that gap by proposing the creation of quantitative satisfaction curves for critical engineering metrics, providing a robust tool to support decision-making during the early stages of vehicle design. Through a combination of clinics, research, and statistical analysis, this project outlines a step-by-step process for developing (dis)satisfaction curves, offering a clearer understanding of how dimensions like headroom, glove box volume, and A-pillar obscuration
In response to increasing environmental awareness and the automotive industry's push for sustainability, the development of lightweight and robust components has become a key area of focus. This paper presents a multidisciplinary approach to the design and optimization of an aluminum parking brake lever, leveraging advanced structural optimization techniques to enhance performance while meeting stringent environmental standards. Traditional manufacturing processes for automotive components, such as stamping, often rely on steel due to its strength and ease of processing. However, the high density of steel can significantly impact the overall weight of the vehicle, leading to increased fuel consumption and emissions. In contrast, aluminum’s superior strength-to-weight ratio offers a promising alternative. This study employs Finite Element Analysis (FEA) to model the initial stress history of the lever, followed by the application of structural optimization tools to refine its geometry
Since the emergence of the first tanks in World War I, tracked military vehicles have driven the development of increasingly sophisticated control systems, keeping pace with the evolution of technologies and combat tactics. This study aims to develop a longitudinal speed control system for tracked military vehicles using a cascade framework. To this end, a dynamic model based on the bicycle model—commonly employed for wheeled vehicles—has been appropriately adapted to represent the dynamics of tracked vehicles. In the first stage, a Model-based Predictive Controller defines the required traction force to be produced by the track; subsequently, a PID controller determines the necessary torque on the drive pulley to achieve the desired force. Simulations performed in MATLAB, considering a straight trajectory and speeds of up to 20 km/h, demonstrate the effectiveness of the proposed control system, yielding satisfactory results in the regulation of longitudinal speed.
Flex-fueled vehicles (FFV) dominate the Brazilian market, accounting for over 75% of the national fleet. Ethanol fuel is widely used, primarily in the form of hydrated ethyl alcohol fuel (HEAF). Given the similar physicochemical properties of ethanol and methanol, fuel adulteration is a growing concern, often involving the addition of anhydrous ethanol, methanol, or even water to hydrated ethanol. These adulterants are visually imperceptible and can only be detected through analyses conducted by regulatory agencies using specialized instruments. However, they can significantly affect vehicle performance and accelerate engine component deterioration. The experiment was performed with a small displacement 3-cylinder port fuel injection flex-fuel engine on an engine test bench (dynamometer) and compared when fueled with ethanol and methanol. Data acquisition included combustion pressure, spark plug temperature, torque, air-fuel ratio, fuel flow, spark maps, and the overall effects of
Occupant comfort is a fundamental consideration during the early stages of vehicle development, with internal spaciousness serving as a key pillar in creating a pleasant in-cabin experience. Among the various factors that contribute to this perception, legroom plays a particularly significant role, especially for rear-seat passengers. This study investigates the relationship between second-row legroom and occupant satisfaction under real-world driving conditions, employing a combination of research, statistical data analysis, and dynamic clinics to assess perceptual comfort. The findings reveal that shin and leg heights are the primary drivers of satisfaction or discomfort, while gender and overall height exhibit only minor influences on perceived comfort. Additionally, the study highlights the importance of other interior dimensions, such as shoulder room, knee clearance, and chair height, in shaping overall comfort since if they were poorly chosen, they would have affected clinic














