Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 720

Recently Published

Browse All
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered. The integration of NBC
AC-9 Aircraft Environmental Systems Committee
The intent of this report is to encourage that the thermal management system architecture be designed from a global platform perspective. Separate procurements for air vehicle, propulsion system, and avionics have contributed to the development of aircraft that are sub-optimized from a thermal management viewpoint. In order to maximize the capabilities of the aircraft for mission performance and desired growth capability, overall system efficiency and effectiveness should be considered. This document provides general information about aircraft Thermal Management System Engineering (TMSE). The document also discusses approaches to processes and methodologies for validation and verification of thermal management system engineering. Thermal integration between the air vehicle, propulsion system, and avionics can be particularly important from a thermal management standpoint. Due to these factors, this report is written to encourage the development of a more comprehensive system
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Recommended Practice (ARP) defines recommended analysis and test procedures for qualification of pneumatically, electrically, manually, and hydraulically actuated air valves. They may be further defined as valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff). Qualification testing performed on the airplane to verify compatibility of the valve function and stability as part of a complete system is outside the scope of this document. Refer to ARP1270 for design and certification requirements for cabin pressurization control system components. As this document is only a guide, it does not supersede or relieve any requirements contained in detailed Customer specifications.
AC-9 Aircraft Environmental Systems Committee
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
In recent times, a standard driving cycle is an excellent way to measure the electric range of EVs. This process is standardized and repeatable; however, it has some drawbacks, such as low active functions being tested in a controlled environment. This sometimes causes huge variations in the range between driving cycles and actual on-road tests. This problem of variation can be solved by on-road testing and testing a vehicle for customer-based velocity cycles. On-road measurement may be high on active functions while testing, which may give an exact idea of real-world consumption, but the repeatability of these test procedures is low due to excessive randomness. The repeatability of these cycles is low due to external factors acting on the vehicle during on-road testing, such as ambient temperature, driver behavior, traffic, terrain, altitude, and load conditions. No two measurements can have the same consumption, even if they are done on the same road with the same vehicle, due to the
Kelkar, KshitijKanakannavar, Rohit
Optimizing Vehicle Routing is a key application for determining the most effective sequence of locations in electric trucks. This optimization not only enhances operational efficiency but also minimizes energy consumption and reduces overall costs. A critical aspect of Optimal Vehicle Routing is identifying charging stations along the route, particularly for electric vehicles with specific range requirements. The availability of these charging stations is crucial for maintaining the continuity of operations and preventing delays. This paper explores multiple methods for charger identification, simulating and comparing their effectiveness. The primary parameter for comparison are the energy consumption, throughput, and the energy efficiency of the routes generated by various methods, which directly impacts the feasibility of real-time applications in logistics. The results of this study provide insights into the efficiency of different charger identification methods within the Optimal
Bhat, AdithyaPrasad P, ShilpaKolakar, RakshitaMyers, MichaelKlein, FischerShrivastava, Himanshu
This paper focuses on the development of a lightweight, functionally integrated Front-End Structure (FES) using plastic-metal hybrid injection molding technology. The objective is to achieve modularization, part consolidation, weight and cost reduction. The proposed design integrates multiple components into a single module which makes assembly faster and easier. A mounting strategy with fixation features was added into the structure, which effectively supports various components and sub-assemblies. Component-level Finite Element Analysis (FEA) was carried out which includes static strength analysis, bending and torsional stiffness analysis, modal analysis as well as latch pull test to achieve required structural strength. Ribbing structures were designed and optimized based on FEA result to provide the necessary strength and stiffness to the structure within the minimum weight. Moldflow analysis was carried out to evaluate manufacturability with focusing on gate design, minimizing
Srivastava, SanjayThakoor, Shruti GhanshyamSonkusare, Shailesh
Passenger cars are subjected to extensive conditions ranging from driving through wet roads, water puddles, icy roads, and rain. This can affect the performance of different parts over time, one such aspect is the vehicle corrosion, whose impact is felt on a wide spectrum from aesthetics to safety due to loss of material. The general condition for corrosion mainly requires electrolyte to be present on the metal surface, which is transported through self-soiling and foreign soiling. Vehicle soiling is an important aspect for vehicle design. Amongst the many aspects of vehicle soiling, one important aspect is the prediction of water accumulation that enables prediction of corrosion sensitive regions in the vehicle. Power train components like Engine, transmission and corresponding wiring harness are at highest risk of water-wetting, As the vehicle drives through the water puddle the components are not just wet by the direct inflow of water but also by water being splashed by moving
Shukrey, SarthakPattankar, RohanYenugu, Srinivasa
Rear-facing infant seats that are positioned behind front outboard vehicle seats are at risk of being compromised by the rearward yielding of occupied front seat seatbacks during rear-impact collisions. This movement can cause the plastic shell of the infant seat to collapse and deform, increasing the risk of head injuries to the infant. Current designs of rear-facing infant seats typically do not consider the loading effects from the front seatback during rear-impact situations, which results in weak and collapsible shell structures. Moreover, regulatory compliance tests, such as FMVSS 213, do not include assessments of rear-facing infant seats under realistic rear-impact conditions. as the bench used for the regulatory test lacks realistic vehicle interior components. This study emphasizes the need for revised testing methodologies that employ sled tests with realistic seatback intrusion conditions to facilitate the development of improved infant seat designs. Research shows that
Thorbole, Chandrashekhar
In electric and hybrid vehicles, sound package optimization can follow a classical, proven, and structured approach for real-world loads, while also considering new transmission paths that might differ from those in traditional internal combustion engine vehicles. However, AVAS-induced interior noise is sometimes underestimated and therefore not taken into account during the optimization process. Nevertheless, especially at very low speeds, the presence of the AVAS can be perceived as unwanted noise inside the vehicle, potentially compromising interior comfort. In this study, a hybrid boundary element–statistical energy analysis (BEM – SEA) approach is applied to an SEA dual-motor electric vehicle demonstrator model equipped with a baseline, standard sound package to assess AVAS-induced interior noise. A standard AVAS actuator is modeled with a BEM model to compute the sound pressure levels on the exterior subsystems of the vehicle. These results are then transferred to the SEA model
Fiedler, RobertCalloni, MassimilianoMartin, Simon
The rapid evolution of modern automotive systems—powered by advancements in autonomous driving and connected vehicle technologies— pose fundamental challenges to design and integration. A specific challenge of these highly interconnected, software-driven systems is in ensuring their safety while avoiding spiralling costs and development times. This challenge calls for a more structured and rigorous approach to safety assurance than traditional methods. Traditional safety cases tend to take a linear, justification-focused approach that mainly focuses on positive assertions —compliance to safety —while giving limited attention to potential weaknesses, or gaps in supporting evidence. This practice may lead to criticism that such arguments are “too positive,” portraying an overly biased or optimistic view of system safety without sufficiently acknowledging areas of unresolved risk. As a result, conventional approaches for developing a safety case may overlook complex interactions
Kumar, AmrendraBagalwadi, SaurabhMcMurran, Ross
Electric vehicles (EVs) are becoming more popular than Internal Combustion Engine (ICE) powered vehicles, but their battery and motor components elevate their Gross Vehicle Weight (GVW), posing unique collision risks. Manufacturers strategically mount the high voltage (HV) battery packs under the passenger compartment to lower the Centre of Gravity and shield them from the front impacts. However, side impacts remain a concern, as the battery deformation in such instances could trigger fires or explosions, endangering occupants. To address this, crashworthiness designs adhere to New Car Assessment Program (NCAP) standards, particularly against side pole impact and side mobile barrier impact. Unlike the frontal section of BIW, which typically has larger crush space to absorb the crash energy, extensive design attention is required to the vehicle's side structure to absorb pole impacts without transmitting excessive force to the battery pack. Utilizing aluminium extrusions and sheet
Nivesh, DharunNamani, PrasadRamaraj, Rajasekar
Passenger vehicle users often manoeuvre their cars in diverse and unpredictable driving patterns. The vast and varied terrain of the Indian subcontinent further complicates this scenario, introducing unique challenges due to differences in driving expertise, vehicle usage, and environmental conditions. A specific challenge addressed in this paper arises during different engine temperatures and transient driving conditions—a critical phase for engine calibration to ensure optimal drivability and emissions performance. With current calibration practices, a backfire like abnormal engine noise was observed during certain transient driving patterns. This paper presents a novel calibration methodology designed to eliminate such abnormal noise. The proposed approach involves a step-by-step transient calibration refinement, making the calibration process more robust and adaptable to any driving behaviour. The paper outlines the specific challenges encountered and details the multi-level
Suna, BhagyashreeTyagarajan, SethuramalingamPise, ChetanAishwarya, Amritansh
Quieter cabins in an automobile are the new era, they provide customers with pleasurable driving experience. Squeak and Rattle are spoil sport for any OEM that aim to improvise customer driving experience. Their nonlinear nature makes it difficult to formulate design frontloading methods. The issue of seals rubbing against the body & door interface is a clear sign of seal squeak & seal chucking. Seals are applied with anti-friction coatings to avoid stick slip phenomena between EPDM and painted panel. Primary root cause for seal squeak is coating erosion. The challenge lies in determining whether the body or the closure side contributes to the seal issue. This paper presents a distinctive approach for identifying the seal squeaking noise and enriches on the new modelling methods for seal interaction with door and body interfaces using FE software. The proposed method was able to highlight the locations along the door-body interface for squeak noise. The approach for reducing the
H, RavishankarC M, MithunMichael Stephan, Navin Estac RajaMohammed, Riyazuddin
The automotive market trend is shifting more and more to SUVs and crossovers. This, therefore, means increasing consumer demand for off-road abilities in passenger vehicles. While dedicated off-road platforms provide a path to performance robustness, getting the same level of functionality out of a passenger vehicle with minimal architectural changes proves to be a great feat for engineers. One highly critical performance determinant in the domain of off-road ability is wheel articulation, it requires independent movement capacity of the wheels to keep contact and stability over uneven terrain. Traditional articulations found in passenger car suspensions—created for comfort, packaging, and on-road dynamics—are limited by suspension geometry, damper alignment as well as compliance setup. Damper side loads- were not considered a significant factor in suspension systems that are operating within their original intended design envelope for on-road use. However, when the vehicle is taken
Siddiqui, ArshadIqbal, ShoaibDwivedi, Sushil
In the quest for enhancing electric vehicle performance and safety, this paper presents a comprehensive investigation into the design and performance of high-voltage (HV) battery cooling plates featuring dedicated cooling channels, integrated with structural bottom protection members. The study aims to address the dual challenges of thermal management and crash protection in electric vehicles during bottom impacts. The research evaluates the cooling efficiency and structural resilience of the proposed design through a combination of design iterations, thermal performance evaluation, and crash simulations. Findings reveal that the integrated cooling plates not only maintain optimal battery temperatures under various operating conditions but also significantly improve the vehicle's crashworthiness. It was found that the cooling efficiency of the HV battery plates improved compared to competitor’s design, resulting in a more stable thermal environment for the battery cells. Moreover
Dusad, SagarKummuru, SrikanthJoshi, Amarja
The customer perception of ride comfort with vehicle performance is the most important aspect in a vehicle design. The ride comfort and vehicle performance are influenced by driveline components i.e. propeller shaft phase angle, inclination angle and critical frequency of the driveline system. The optimization of the driveline system is essential to ensure the efficient and smooth power transfer. Propeller shaft is one of the critical components in the driveline to influence the vehicle performance. Propeller shaft characteristics influenced by several factors like vehicle max torque, propeller shaft joint type, materials properties, UJ phase and inclination angle and shaft unbalance value. The optimization of the above parameter within the tolerance limit enables to meet the required performance standard. Various methodologies are available to optimize these parameters to enhance the vehicle performance and comfort leads to customer satisfactions. This study focuses on the analytical
Kumar, SarveshSanjay, LS, ManickarajaKanagaraj, Pothiraj
The design and improvement of electric motor and inverter systems is crucial for numerous industrial applications in electrical engineering. Accurately quantifying the amount of power lost during operation is a substantial challenge, despite the flexibility and widespread usage of these systems. Although it is typically used to assess the system’s efficiency, this does not adequately explain how or why power outages occur within these systems. This paper presents a new way to study power losses without focusing on efficiency. The goal is to explore and analyze the complex reasons behind power losses in both inverters and electric motors. The goal of this methodology is to systematically analyze the effect of the switching frequency on current ripple under varying operating conditions (i.e., different combinations of current and speed) and subsequently identify the optimum switching frequency for each case. In the end, the paper creates a complete model for understanding power losses
Banda, GururajSengar, Bhan
The adoption of sustainability in electric mobility has made it crucial to investigate environmentally friendly materials. Polymer materials used in automotive application plays very important role in material circularity contributing significant value addition to the overall carbon footprint index. This study discloses the development of recycled polyester textiles derived from PET bottle waste and use for automotive interior parts. The use of recycled textiles is directly helping the organization in scope 3 emissions to get the lower carbon footprint value as it is eliminating the use of fossil fuel resources in making the PET textiles. In this study, the development of 50% recycled PET textile and its feasibility for automotive interior is disclosed in detail. The 50 % recycled PET was tested against automotive critical requirements such as sun load UV resistance, abrasion durability, color migrations, soiling resistance, mechanical and thermal properties. The findings showed that
Palaniappan, ElavarasanVaratharajan, SenthilkumaranBalaji, K VDodiya, Rohanbhai
This comprehensive research presents an in-depth analysis of communication protocols essential for implementing fast charging systems in India's rapidly expanding electric two-wheeler and three-wheeler market. As India witnesses unprecedented growth in electric mobility, with two-wheelers representing over 95% of current EV sales, the establishment of standardized, secure, and efficient charging protocols becomes paramount for widespread adoption. This study examines the current landscape of AC charging methodologies, evaluates the technical and economic feasibility of DC fast charging implementation, and provides detailed comparative analysis of existing international standards including IS 17017-25, IS 17017-31, ChaoJi, and CCS 2.0. The research concludes with strategic recommendations for developing cyber-secure, cost-effective charging infrastructure specifically tailored to meet India's unique market requirements and operational constraints.
Uthaman, SreekumarMulay, Abhijit B
Electric Vehicles (EV) are increasingly becoming more and more popular in the markets, especially in the commercial vehicle segments. Amidst this, the need to find new elegant methods to perform charging of EV battery becomes extremely crucial. In areas with high demand and limited power capacity, performing charging for multiple vehicles necessitates efficient usage of charging infrastructure, which can’t be guaranteed by the traditional charging methods. Sequential charging is a new state of art technique for managing the charging of multiple EV’s simultaneously connected to a single charging station. Rather than dividing the available power equally among all connected vehicles or charging them one at a time, this technique dynamically allocates power based on various factors such as charging priority, vehicle needs and available infrastructure capacity. Currently, sequential charging can only be implemented by a particular set of chargers that are interconnected via backend and
De, AbirBhattacharya, UllashParihar, Aakash
To conduct RDE (Real-Drive Emission) test on CEV (Construction Equipment Vehicle), the first step is to study the requirements set forth in the regulation [1, 2] for data collection, post-processing of data and emission calculation along with certain requirements for vehicle operation. Conducting tests on CEV machines poses a different set of challenges compared to on-road vehicles, the major one being the placement of PEMS (Portable Emission Measurement Equipment) on the machine under test. No singular method or mechanism can be specified to suit all types of machinery, although certain guidelines can be set for best practices. The requirement of running the machine on an actual duty cycle or a reference duty cycle requires a thorough study of the intended machine operation and also awareness on the multi-functionality setups offered for such machines by manufacturers, before deciding on a duty cycle to run during actual emission testing. Measurement of emission components such as
Chauhan, PratyushKulkarni, S DMore, ManojJoshi, Monal Vishwas