Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
Gupta, IshanBhatnagar, AbhinavKumar, Ayush
The study emphasizes on development of Diesel Exhaust Fluid (DEF) dosing system specifically used in Selective Catalytic Reduction (SCR) of diesel engine for emission control, where a low pressure pumpless DEF dosing system is developed, utilizing compressed air for pressurizing the DEF tank and discharging DEF through air assisted DEF injection nozzle. SCR systems utilize Diesel Exhaust Fluid (DEF) to convert harmful NOx emissions from diesel engines into harmless nitrogen and water vapor. Factors such as improper storage, handling, or refilling practices can lead to DEF contamination which pose significant operational challenges for SCR systems. Traditional piston-type, diaphragm-type, or gear-type pumps in DEF dosing systems are prone to mechanical failures leading to frequent maintenance, repairs, and costly downtimes for vehicles. To overcome the existing challenges and to create a more reliable and simple DEF delivery mechanism the pumpless DEF Dosing system is developed. The
M, HareniGiridharan, JyothivelA.l, SureshV, YuvarajRajan, Bharath
In today’s fast paced and competitive automotive market, meeting the customer’s expectation is the key to any OEM. This has led to development of downsized high performance engines with refinement as an important deliverable. However developing such high output engines do come with challenges of refinement, especially higher torsional vibrations leading to transmission noise issues. Hence, it becomes important to isolate the transmission system from these high torsional vibration input. To address this, one of the most common method is to adopt Dual Mass flywheel (DMF) as this component dampens torsional vibrations and isolates the transmission unit from the same. While Dual Mass Flywheel assemblies do great job in protecting the transmission units by not allowing the oscillations to pass through them, they do have their own natural resonance frequency band close to the engine idle (low) engine speeds, which must be avoided for a continuous operation otherwise it may lead to Dual Mass
Raiker, Rajanviswanatha, Hosur CJadhav, AashishJain, OjaseJadhav, Marisha
Improving transaxle efficiency is vital for enhancing the overall performance and energy economy of electric vehicles. This study presents a systematic approach to minimizing power losses in a single-speed, two-stage reduction e-transaxle (standalone) by implementing a series of component-level design optimizations. The investigation begins with the replacement of conventional transmission oil with a next-generation low-viscosity transmission fluid. By adopting a lower-viscosity lubricant, the internal fluid resistance is reduced, leading to lower churning losses and improved efficiency across a wide range of operating conditions. Following this, attention is directed toward refining the gear macro-geometry to create a gear set with reduced power losses. This involves adjustments to parameters such as module, helix angle, pressure angle, and tooth count, along with the introduction of a positive profile shift. These modifications improve the contact pattern, lower sliding friction, and
Agrawal, DeveshBhardwaj, AbhishekBhandari, Kiran Kamlakar
The regulatory mechanisms to measure emissions from automobiles have evolved drastically over the years. Certification of CO2 emissions is one of them. It is not only critical for environmental protection but can also invite heavy fines to OEMs, if not complied with. In homologation test of a Hybrid Vehicle, it is necessary to correct the measured CO2 to account for deviations in measurement from failed Start-Stop phase and difference between start and end State of Charge (SOC) of battery. The correction methodology is also applicable for vehicle simulation in Software-in-Loop environment and for analyzing vehicle test data for CO2 emissions with programmed digital tools. The focus of this paper is on the correction of CO2 derived from SOC delta in the WLTP homologation drive cycle. The battery energy delta due to difference in SOC between start and end of drive cycle should be converted to corresponding CO2 expended from Internal Combustion Engine. The resulting correction factor is
Gopinath, Shravanthi PoorigaliKhatod, Krishna
Ambient light reflecting off internal components of the car, specifically the Head-Up Display (HUD), creates unwanted reflections on the Windshield. These reflections can obscure the driver's field of view, potentially compromising safety and reducing visual comfort. The extent of this obscuration is influenced by geometrical factors such as the angle of the HUD and the curvature of the Windshield, which need to be analyzed and managed. The primary motivation is to improve driver safety and visual comfort. This is driven by the need to address the negative impact of ambient light reflecting off Head-Up Displays (HUDs), which can impair visibility through the Windshield. There is a need for tools and methods to address this issue proactively during the vehicle design phase. This study employs a tool-based modeling method to trace the pathways of ambient light from its source, reflecting off the HUD, and onto the Windshield using a dimensional modeling tool. It focuses on: Geometrical
Muchchandi, VinodAkula, Satya JayanthMahindrakar, PramodG S, Sharath
Brake response time in truck air brake systems is crucial for ensuring safety and operational efficiency. This paper details the development of a simulation model aimed at fulfilling all regulatory requirements for brake response time, as well as serving as a tool for stopping distance calculations. The actual pneumatic circuit, including brake valves, relay valves, brake chambers, and plumbing have been replicated. The aim is to use 1D simulations to predict the response time compliance during the pressurizing phase (when brakes are applied) of the brake system. A mathematical model is developed using a commercially available 1D simulation tool. This model employs a lumped parameter approach for the pneumatic components, with governing equations derived from compressible flow theory and empirical valve flow characteristics. The simulation outcomes provide detailed response time and pressure build-up profiles. Validation against 201 vehicle test cases showed 96% of simulations within
Kumbar, PrafulMurugesan, KarthikShannon, Rick
The present study enumerates the effectiveness of using Foam-inside Tyres (FIT) for attenuating the in-cabin noise due to tire-road interaction in Internal Combustion Engines (ICE) converted Electric SUVs (E-SUV). Due to the elimination of the ICE Prime movers in (E-SUV), the Tyre booming, Tyre cavity, and rumbling noise in the structure-borne region are significantly audible in the driver’s & passenger's ears globally for E-SUVs. Foam tyres reduce tyre cavity resonance. However, the effectiveness of the acoustic foam is predominant between 180 to 240 Hz only. In the present study, In Cabin Noise (ICN) measurement was completed on the comfort testing track, and the results of structure-borne in-cabin noise up to 500 Hz were analysed. These measurements identified the vehicle in-cabin sensitive frequencies, which are affected by the tyre and wheel assembly. To analyse the contribution of the Tyre design parameters and to predict the ICN performance in the whole vehicle simulation, CD
Singh, Ram KrishnanDeivasigamani Purushothaman, BalakrishnanPaua, KetanAhire, ManojAdiga, Ganesh N
For regions with cold climate, the range of an electric bus becomes a serious restriction to expanding the use of this type of transport. Increased energy consumption affects not only the autonomous driving range, but also the service life of the batteries, the schedule delays and the load on the charging infrastructure. The aim of the presented research is to experimentally and computationally determine the energy consumption for heating the driver's cabin and passenger compartment of an electric bus during the autumn-winter operation period, as well as to identify and analyze ways to reduce this energy consumption. To determine the air temperature in the passenger compartment, a mathematical model based on heat balance equations was used. This model was validated using data from real-world tests. The research was conducted at a proving ground under two conditions: driving at a constant speed and simulating urban bus operation with stops and door openings. The causes of heat loss in
Kozlov, AndreyTerenchenko, AlexeyStryapunin, Alexander
Over the last few years, notable progress has occurred in electric vehicle (EV) technology. Inverters are key components for electric vehicles (EV). Various PWM strategies have been implemented by OEMs over past years. For most of PWM scheme timing calculation & Lengthy algorithm increases complexity. The proposed a novel Pulse Width Modulation (PWM) control technique for generating inverter lag switching times in multi-level inverters. The proposed Space Vector PWM (SVPWM) method eliminates the need for sector and region identification by utilizing sampled values of reference phase voltages, thereby reducing computational efforts and complexities. The scheme can generate N-level PWM signals and offers flexibility to operate with fewer levels, including operation in the overmodulation range. The sampled magnitudes reference phase voltages are converted into timing signals that are subsequently processed by an algorithm to modify modulating signals. These modulating signals are
Bhanabhagvanwala, Prem Kiritkumar
Increasing ethanol blending in gasoline is significant from both financial (reducing dependency on crude oil) and sustainability (overall CO2 reduction) points of view. Flex Fuel is an ethanol-gasoline blend containing ethanol ranging from 20% to 85%. Flex Fuel emerges as an exceptionally advantageous solution, adeptly addressing the shortcomings associated with both gasoline and ethanol. Performance optimization of Flex Fuel is a major challenge as fuel properties like knocking tendency, calorific value, vapour pressure, latent heat, and stoichiometric air-fuel ratio change with varying ethanol content. This paper elaborates on the experimental results of trials conducted for optimizing engine performance with Flex Fuel for a 2-cylinder engine used in a small commercial vehicle. To derive maximum benefit from the higher octane rating of E85, the compression ratio is increased, while ignition timing is optimized to avoid knocking with E20 fuel. For intermediate blends, ignition timing
Kulkarni, DeepakMalekar, Hemant AUpadhyay, RajdipKatkar, SantoshUndre, Shrikant
The invention tackles the main drawback of traditional electric vehicle charge ports which use Vehicle Control Unit (VCU) communication intensively and tend to have separate actuators to fulfill the locking function and requirements. These existing systems do not only limit autonomous operation of the charging lid in ignition-off condition but they also add mechanical complexity and packaging space, as well. To overcome these limitations, this research work introduces a Smart Charge Port Housing (CPH), which combines a rotary actuator with an onboard microcontroller and single shaft self-locking device, which allows intelligent and autonomous control of the flaps without relying on vehicle wide control networks. The actuator can remember the last position that the charging lid was in so it can be operated even while the VCU is in the inactive state. The integrated self-locking functionality is achieved by using a specially designed hinge shaft that allows a certain free play for
Mohunta, SanjayKhadake, Sagar
The objective of this study was to examine the effect of Correlated Colour Temperature (CCT) of automotive LED headlamps on driver’s visibility and comfort during night driving. The experiment was conducted on different headlamps having different correlated colour temperatures ranging from 5000K to 6500K in laboratory. Further study was conducted involving participants of different age group and genders for understanding their perception to identify objects when observed in light of different LED headlamps with different CCTs. Studies have shown that both Correlated Colour Temperature and illumination level affect driver’s alertness and performance. Further study required on headlamps with automatically varying CCT to get better solution on driver’s visibility and safety.
Patil, Mahendra G.Kirve, JyotiParlikar, Padmakumar
Calibration of measuring instruments is of utmost importance in the field of metrology. It is a mandatory pre-requisite for establishing the fidelity of the measurements as well as to lend confidence. Even more critical is the requirement for the master equipment deployed to calibrate the devices in use. This entails that high accuracy needs to be guaranteed in the calibration process, and that the uncertainty be quantified precisely. The widely used conventional least squares polynomial regression formulation for load cell calibration is based on the non-normalized residual, which is the difference between the measured and master values. The nature of this formulation is such that it imparts more weightage on measured values at higher ranges resulting in good accuracy. However, there is a limitation of this same formulation that results in lesser accurate fit at lower values especially if the instrument is to be used in operation over a wide range including lower ranges of the
S Thipse, Yogesh
The need for energy is ever increasing, though the dependency on renewable energy have increased, it is not sufficient to cater the demand. India is one of fastest developing country which depends on coal 55% for its total energy need. To achieve coal digging & transportation an underground mining vehicle has gained high importance. Underground mine environment is inherently dangerous due to various factors, including explosive and toxic gases, dust, and the potential for collapses. Thereby vehicles running in coal mines requires extreme safety features to safeguard its operator & coal mine workers. In India the Directorate General of Mines Safety (DGMS) under Government of India circulates notification to Manager of Coal and Metalliferous Mines & OEM, concerned about the minimum safety evaluations to be taken care for the mining trucks. It has been observed that there are significant inconsistencies in design practices for mining vehicles, with the presence of multiple, unverified
Babar, SagarAkbar Badusha, A
Variable Valve Timing (VVT) is an advanced technology implemented in internal combustion engines to optimize the opening and closing timing of the intake and exhaust valves. Its primary objective is to improve engine performance, fuel efficiency, and reduce emissions by dynamically adjusting the valve timing based on the engine’s operating conditions i.e. engine speed and load conditions. However, the VVT system may experience various operational issues caused due to low engine oil levels, contaminated engine oil, solenoid malfunctions, and camshaft phaser issues, which can adversely affect engine performance, fuel efficiency, and emissions. This paper provides an in-depth analysis of VVT malfunctions, specifically attributed to the resonance effect of VVT components at various engine RPMs & oil temperature. The study also explains the phenomenon causing VVT sluggishness during advance phase due to resonance between oil pulsation & VVT components. Other factors contributing to VVT
Jha, AnkurSau, SanjoyKumar, BharatSandeep, Sandeep
Highway Pilot (HWP) systems, classified as SAE Level 3 Automated Driving Systems (ADS), represent a potential advancement for safer and more efficient highway drives. In this work, the development of a connected HWP prototype is presented. The HWP system is deployed in a real test vehicle and designed to operate autonomously in highway environments. The implementation presented in this paper covers the complete setup of the vehicle platform, including sensor selection and placement, hardware integration and communication interfaces for both autonomous functionality and Vehicle-to-Everything (V2X) connectivity. The software architecture follows a modular design, composed of modules for perception, decision-making and motion control to operate in real-time. The prototype integrates Vehicle-to-Vehicle (V2V) communication, such as Cooperative Awareness Messages (CAM), to enhance situational awareness and improve the overall system behaviour. The modular structure allows new functionalities
Domingo Mateu, BernatLeiva Ricart, GiselaFacerias Pelegri, MarcPerez, Marc
The high-pressure steering hose in a hydraulic steering system carries pressurized hydraulic fluid from the power steering pump to the steering gear (or steering rack). Its main function is to transmit the force generated by the pump so that the hydraulic pressure assists the driver in turning the wheels more easily. The high-pressure hydraulic pipeline in the power steering system is a vital component for ensuring optimal performance. During warranty analysis, leakage incidents were observed at the customer end within the warranty period. The primary factors contributing to these failures include pipe material thickness, material composition, mechanical properties, and engine-induced vibrations. This study investigates fatigue-related failures through detailed material characterization and Computer-Aided Engineering (CAE) based on real world usage road load data collected. The objective is to identify the root causes by examining the influence of varying pipe thickness on fatigue life
Survade, LalitKoulage, Dasharath BaliramBiswas, Kaushik
Oil pressure, the most fundamental to engine's performance and longevity, is not only critical to ensure that the engine components are properly lubricated, cooled, and protected against wear and contamination, but also ultimately contributing to reliable engine performance. Due to several factors of engine such as, rotational fluctuation, aeration, functioning of hydraulic components there are fluctuations in oil pressure. In engines, with a crank-mounted fixed displacement oil pump (FDOP), these inherited pressure fluctuations cannot be eliminated completely. However, it is very necessary to control the abnormal oil pressure fluctuation because abnormal pressure fluctuation may lead to malfunction of hydraulic component functioning like variable valve timing (VVT), hydraulic lash adjuster (HLA) and dynamic chain tensioner which can further cause serious issues like excessive or sudden load drops, unstable engine performance, valve train noise, improper valve lift operation etc. In
Kumar, AshokChoubisa, ManasKumar, RaviPathak, Mehul
The automotive industry is undergoing a significant technological transformation, which is continually impacting the methods used to test the functionalities, delivered to end consumer. This includes the ever-growing need to embed software-based functions to support more and more end user functionality, while at the same time retaining existing and well-established functions, all within short development timelines. This presents both opportunities and challenges, with greater potential for reuse or leverage of test assets, although the actual percentage of leverage on real world projects is practically less than anticipated for a multitude of reasons. This paper collates the various factors which effect the practical leverage of test assets from one project to another, including various workflows and the interaction across components amongst applications lifecycle management systems. Alongside, it describes the current practices of basis analysis in isolation in combination with
Venkata, ParameswaranKulkarni, ApoorvaRAJARAM, SaravananGanesh, Chamarthi
Generating a reliable drive file for an electrodynamic (ED) shaker from Road Load Data Acquisition (RLDA) and validating its correlation with real-world conditions through damage and fatigue analysis is crucial for accurate component testing, particularly in complex systems like off-highway exhaust systems. This paper presents a methodology for creating such a drive file and establishing its validity, highlighting the necessity of ED shakers for simulating the intricate dynamic loads experienced by these systems. The process begins with acquiring comprehensive RLDA under representative operational conditions of the off-highway vehicle. Drive files are generated using this data, which records accelerations at important exhaust system mounting locations. Advanced signal processing techniques are employed to condense the raw RLDA into a format suitable for shaker control. To establish proper correlation, the generated drive file is used to excite the exhaust system on an ED shaker
Khaire, Santosh RamdasKhaire, RushikeshYadav, Dnyaneshwar
An optimal engine lubrication system, encompassing engine oil and an oil cooler, is critical for thermal management and minimizing frictional losses. This system ensures adequate lubrication and cooling of engine components, thereby maintaining optimal performance. This study investigates the implications of oil cooler removal in a 45HP inline engine tractor. Various validation trials were conducted, including high ambient temperature tests under worst-case conditions, high coolant temperature scenarios, and a rigorous tractor killer test. In the latter, the tractor underwent 100 hours of operation on a PTO bench at maximum engine RPMs. Despite an observable increase in lubricant oil temperature during these tests, the tractor did not exhibit any component seizure or failure. The findings aim to determine whether the inclusion of an oil cooler is essential for the engine's operational reliability. This research offers valuable guidance for optimizing hardware selection and cost
Gupta, DeepakKumar, PankajSingh, ManjinderSingh, GagandeepKumar, MunishSingh, HarpreetSingh, Maninder
This paper presents a comprehensive technical review of the Software-Defined Vehicle (SDV), a paradigm that is fundamentally reshaping the automotive industry. We analyze the architectural evolution from distributed Electronic Control Units (ECUs) to centralized zonal compute platforms, examining the critical role of Service-Oriented Architectures (SOA), the AUTOSAR standard, and virtualization technologies in enabling this shift. A comparative analysis of leading High-Performance Computing (HPC) platforms, including NVIDIA DRIVE, Tesla FSD, and Qualcomm Snapdragon Ride, is conducted to evaluate the silicon foundation of the SDV. The paper further investigates key enabling technologies such as Over- the-Air (OTA) updates, Digital Twins, and the integration of Artificial Intelligence (AI) for applications ranging from predictive maintenance to software-defined battery management. We scrutinize the competing V2X communication standards (DSRC vs. C-V2X) and address the paramount
Ahmad, AqueelHemanth, KhimavathKumar, OmKumar, RajivHaregaonkar, Rushikesh Sambhaji