Your Destination for Mobility Engineering Resources
Recently Published
Browse AllThis paper elucidates the implementation of software-controlled synchronous rectification and dead time configuration for bi-directional controlled DC motors. These motors are extensively utilized in applications such as robotics and automotive systems to prolong their operational lifespan. Synchronous rectification mitigates large current spikes in the H-bridge, reducing conduction losses and improving efficiency [1]. Dead time configuration prevents shoot-through conditions, enhancing motor efficiency and longevity. Experimental results demonstrate significant improvements in motor performance, including reduced thermal stress, decreased power consumption, and increased reliability [2]. The reduction in power consumption helps to minimize thermal stress, thereby enhancing the overall efficiency and longevity of the motor.
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
Nowadays, digital instrument clusters and modern infotainment systems are crucial parts of cars that improve the user experience and offer vital information. It is essential to guarantee the quality and dependability of these systems, particularly in light of safety regulations such as ISO 26262. Nevertheless, current testing approaches frequently depend on manual labor, which is laborious, prone to mistakes, and challenging to scale, particularly in agile development settings. This study presents a two-phase framework that uses machine learning (ML), computer vision (CV), and image processing techniques to automate the testing of infotainment and digital cluster systems. The NVIDIA Jetson Orin Nano Developer Kit and high-resolution cameras are used in Phase 1's open loop testing setup to record visual data from infotainment and instrument cluster displays. Without requiring input from the system being tested, this phase concentrates on both static and dynamic user interface analysis
Modern vehicle technologies such as keyless entry, push-button start, digital switches have made it easier and more convenient to operate cars. However, this ease of operation has also introduced new safety concerns, particularly the increased risk of accidental operations by children. This can lead to unintentional vehicle movement, injuries, and even fatalities. Existing safety features (e.g., unattended child presence alarms) mitigate entrapment risks but do not prevent children from unintentionally starting or shifting while inside. This paper proposes implementation of a solution for child-safety system which inhibits certain functionalities to prevent accidental operations by underage occupants. The proposed system combines multiple existing technologies like weight sensors, seat position detection, facial recognition, in vehicle camera tracking to determine the child presence. With this, certain operations can be temporarily inhibited, or the vehicle can ask for secondary
Traditionally, occupant safety research has centered on passive safety systems such as seatbelts, airbags, and energy-absorbing vehicle structures, all designed under the assumption of a nominal occupant posture at the moment of impact. However, with increasing deployment of active safety technologies such as Forward Collision Warning (FCW) and Autonomous Emergency Braking (AEB), vehicle occupants are exposed to pre-crash decelerations that alter their seated position before the crash. Although AEB mitigates the crash severity, the induced occupant movement leads to out-of-position behavior (OOP), compromising the available survival space phase and effectiveness of passive restraint systems during the crash. Despite these evolving real-world conditions, global regulatory bodies and NCAP programs continue to evaluate pre-crash and crash phases independently, with limited integration. Moreover, traditional Anthropomorphic Test Devices (ATDs) such as Hybrid III dummies, although highly
As the brain and the core of the electric powertrain, the traction inverter is an essential part of electric vehicles (EVs). It controls the power conversion from DC to AC between the electric motor and the high-voltage battery to enable effective propulsion and regenerative braking. Strong and scalable inverter testing solutions are becoming more essential as EV adoption rises, particularly in developing nations like India. In India, traditional testing techniques that use actual batteries and e-motors present several difficulties, such as significant safety hazards, inadequate infrastructure, expensive battery prices, and a shortage of prototype-grade parts. This paper presents a comprehensive approach for traction inverter validation using the AVL Inverter TS™ system incorporating an advanced Power Hardware-in-the-Loop (PHiL) test system based on e-motor emulation technology. It enables safe, efficient, and reliable testing eradicating the need for actual batteries or mechanical
The automotive industry is rapidly advancing towards autonomous vehicles, making sensors such as Cameras, LiDAR, and RADAR critical components for ensuring constant information exchange between the vehicle and its surrounding environment. However, these sensors are vulnerable to harsh environmental conditions like rain, dirt, snow, and bird droppings, which can impair their functionality and disrupt accurate vehicle maneuvers. To ensure all sensors operate effectively, dedicated cleaning is implemented, particularly for Level 3 and higher autonomous vehicles. It is important to test sensor cleaning mechanisms across different weather conditions and vehicle operating scenarios to ensure reliability and performance. One crucial aspect of testing is tracking the trajectory of the cleaning fluid to ensure it does not cause self-soiling of vehicles and affects the field of view or visibility zones of other components like the windshield. While wind tunnel tests are valuable, digitalizing














