Your Destination for Mobility Engineering Resources
Recently Published
Browse AllThis specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
This study presents an integrated vehicle dynamics framework combining a 12-degree-of-freedom full vehicle model with advanced control strategies to enhance both ride comfort and handling stability. Unlike simplified models, it incorporates linear and nonlinear tire characteristics to simulate real-world dynamic behavior with higher accuracy. An active roll control system using rear suspension actuators is developed to mitigate excessive body roll and yaw instability during cornering and maneuvers. A co-simulation environment is established by coupling MATLAB/Simulink-based control algorithms with high-fidelity multibody dynamics modeled in ADAMS Car, enabling precise, real-time interaction between control logic and vehicle response. The model is calibrated and validated against data from an instrumented test vehicle, ensuring practical relevance. Simulation results show significant reductions in roll angle, yaw rate deviation, and lateral acceleration, highlighting the effectiveness
Vehicles with a high center of gravity (CG) and moderate wheel track, like compact Sport Utility Vehicles (SUVs), have a relatively low Static Stability Factor (SSF) and thus are inherently less stable and more susceptible to rollover crashes. Moreover, to be more maneuverable in highly populated urban areas, a smaller Turning Circle Diameter (TCD) is necessary. Here, Variable Gear Ratio (VGR) steering systems have major benefits over traditional Constant Gear Ratio (CGR) systems in terms of enhancing both roll stability and agility. To adapt VGR steering systems to a particular vehicle dynamic, Full Vehicle (FV) and Driver-in-the-Loop (DIL) simulations are utilized. Using this method, exact calibration is possible according to realistic driving conditions so that the VGR steering C-factor curve is properly tuned for optimal handling in on-center, off-centre, and transitional areas of the Steering Wheel Angle (SWA). Primary performance measures—e.g., SWA gradients at different lateral
Side crashes are generally hazardous because there is no room for large deformation to protect an occupant from the crash forces. A crucial point in side impacts is the rapid intrusion of the side structure into the passenger compartment which need sufficient space between occupants and door trim to enable a proper unfolding of the side airbag. This problem can be alleviated by using the rising air pressure inside the door as an additional input for crash sensing. With improvements in the crash sensor technology, pressure sensors that detect pressure changes in door cavities have been developed recently for vehicle crash safety applications. The crash pulses recorded by the acceleration based crash sensors usually exhibit high frequency and noisy responses. The data obtained from the pressure sensors exhibit lower frequency and less noisy responses. Due to its ability to discriminate crash severities and allow the restraint devices to deploy earlier, the pressure sensor technology has














