Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
This paper elucidates the implementation of software-controlled synchronous rectification and dead time configuration for bi-directional controlled DC motors. These motors are extensively utilized in applications such as robotics and automotive systems to prolong their operational lifespan. Synchronous rectification mitigates large current spikes in the H-bridge, reducing conduction losses and improving efficiency [1]. Dead time configuration prevents shoot-through conditions, enhancing motor efficiency and longevity. Experimental results demonstrate significant improvements in motor performance, including reduced thermal stress, decreased power consumption, and increased reliability [2]. The reduction in power consumption helps to minimize thermal stress, thereby enhancing the overall efficiency and longevity of the motor.
Patil, VinodKulkarni, MalharSoni, Asheesh Kumar
Global emission norms are getting very strict due to combat the harmful pollutants from internal combustion engine. Hence internal combustion engine (ICE)-based agricultural tractors need to introduce complex after-treatment systems and fuel optimization to provide same or higher value to farmers as cost of these systems drive the overall cost of the product. Engineers around the world are building Electric vehicles to combat the problem and has range issues due to design constraints & Hybrid tractors have emerged as a promising intermittent solution. It helps in combining the advantages of respective ICE and electrification solutions while reducing overall vehicle emissions and enhances operational flexibility. This paper presents a modular thermal modes system developed for a hybrid electric tractor platform where a downsized diesel engine operates at optimal efficiency DC generator used to charge the battery & DC converter is used to charge the auxiliary battery. Battery which is
K, SunilD, MariNatarajan, SaravananKumawat, Deepakrojamanikandan, ArumughamK, MalaV, SridharanMuniappan, BalakrishnanMakana, Mohan
The penetration of ADAS in automotive markets is increasing rapidly. However, their effectiveness and acceptance are significantly influenced by regional driving behaviours and infrastructure. This study explores the interaction between naturalistic driver behaviour in India and the operational characteristics of ADAS systems (FCW, ACC, LCF and BSD) with focus on cars. Using real-world driving data collected from Indian roads, the research aims to highlight the divergence between ADAS design assumptions often based on structured Western traffic environments and the complex, dynamic nature of Indian traffic, characterized by frequent human negotiation, informal road practices, and different vehicle types. The study characterizes multiple driver’s driving pattern through naturalistic driving and ADAS systems behaviour in corresponding situations, notably how they adapt to unstructured Indian scenarios such as lane ambiguity, pedestrian unpredictability, traffic flow unpredictability and
Sankpal, Krishnath NamdevMagar, AkshayKhot, AnkushKulkarni, AlokPerez, Marc
India’s severe road safety challenges, marked by high accident rates and fatalities, necessitate innovative solutions like Advanced Driver Assistance Systems (ADAS) to align with SIAT 2026’s theme, “Innovative Pathways for Safe and Sustainable Mobility.” This paper synthesizes recent studies to explore ADAS’s role in enhancing safety and sustainability in India’s unique traffic environment. Technologies such as automatic emergency braking, lane departure warnings, and driver monitoring systems show promise in reducing crashes caused by human error, a leading factor in road incidents. However, India’s complex road conditions—unmarked lanes, dense urban traffic, and prevalent two-wheelers—pose significant challenges to ADAS effectiveness. There developed is a strong public support recently for ADAS, with many Indian road users recognizing its safety benefits and advocating for its integration into vehicles especially passenger vehicles. Despite growing adoption by automakers like Tata
Neelakanthu, KarraSreenivasulu, TKumar, OmHaregaonkar, Rushikesh SambhajiKumar, Rajiv
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
Gupta, IshanBhatnagar, AbhinavKumar, Ayush
Nowadays, digital instrument clusters and modern infotainment systems are crucial parts of cars that improve the user experience and offer vital information. It is essential to guarantee the quality and dependability of these systems, particularly in light of safety regulations such as ISO 26262. Nevertheless, current testing approaches frequently depend on manual labor, which is laborious, prone to mistakes, and challenging to scale, particularly in agile development settings. This study presents a two-phase framework that uses machine learning (ML), computer vision (CV), and image processing techniques to automate the testing of infotainment and digital cluster systems. The NVIDIA Jetson Orin Nano Developer Kit and high-resolution cameras are used in Phase 1's open loop testing setup to record visual data from infotainment and instrument cluster displays. Without requiring input from the system being tested, this phase concentrates on both static and dynamic user interface analysis
Lad, Rakesh PramodMehrotra, SoumyaMishra, Arvind
Calibration of measuring instruments is of utmost importance in the field of metrology. It is a mandatory pre-requisite for establishing the fidelity of the measurements as well as to lend confidence. Even more critical is the requirement for the master equipment deployed to calibrate the devices in use. This entails that high accuracy needs to be guaranteed in the calibration process, and that the uncertainty be quantified precisely. The widely used conventional least squares polynomial regression formulation for load cell calibration is based on the non-normalized residual, which is the difference between the measured and master values. The nature of this formulation is such that it imparts more weightage on measured values at higher ranges resulting in good accuracy. However, there is a limitation of this same formulation that results in lesser accurate fit at lower values especially if the instrument is to be used in operation over a wide range including lower ranges of the
S Thipse, Yogesh
In today’s market, faster product development without compromising durability is essential. Durability assessment ensures a vehicle maintains structural integrity under normal and extreme conditions. Achieving this requires effective Road Load Data Acquisition, integrated with robust design practices and efficient validation processes. However, physical RLDA is time-consuming and costly, as it depends on prototype vehicles that are often available only in the later development stages. Failures identified during these late-stage tests can delay the product launch significantly. This study presents a full digital methodology of fatigue life estimation for suspension aggregates. A study has been demonstrated on Rear Twist Beam component of rear suspension. The approach integrates the digital RLDA methodology presented in literature and finite element analysis simulation process, enabling durability assessments entirely within the virtual domain. This approach demonstrates how digital RLDA
Kokare, SanjayDwivedi, SushilSiddiqui, ArshadIqbal, Shoaib
Integrating advanced technologies into modern vehicles has led to an increasing focus on Functional Safety (FuSa), especially for the Automotive Integrated Cluster Module (ICM) to ensure the safety of the driver and passengers. This paper highlights the need to bring certain ICM components under an Automotive Safety Integrity Level B (ASIL-B) context using Classic AUTOSAR. This paper discusses the challenges faced and the solutions implemented for achieving compliance with ISO 26262 standards along with the Classic AUTOSAR framework. We are proposing a standardized and structured methodology for the design of the components in compliance with the key safety principles, including Freedom from Interference (FFI), execution under privileged levels, and integrity verification, particularly by adopting Classic AUTOSAR frameworks. This paper also presents the Functional Safety (FuSa) goals for these components and also extend to their configuration management and updating strategies within
Singh, IqbalKumar, Praveen
Modern vehicle technologies such as keyless entry, push-button start, digital switches have made it easier and more convenient to operate cars. However, this ease of operation has also introduced new safety concerns, particularly the increased risk of accidental operations by children. This can lead to unintentional vehicle movement, injuries, and even fatalities. Existing safety features (e.g., unattended child presence alarms) mitigate entrapment risks but do not prevent children from unintentionally starting or shifting while inside. This paper proposes implementation of a solution for child-safety system which inhibits certain functionalities to prevent accidental operations by underage occupants. The proposed system combines multiple existing technologies like weight sensors, seat position detection, facial recognition, in vehicle camera tracking to determine the child presence. With this, certain operations can be temporarily inhibited, or the vehicle can ask for secondary
Mote, VaishalGarg, MuditPasupuleti, Raju
This study is conducted to analyse the significance of the Bharat NCAP crash test protocol in real road crashes in India. Accident data from on-the-spot investigation (Road Accident Sampling System India) and Government of India’s, Ministry of Road Transport and Highways official road accident statistics 2023 is used together to understand the real road accidents in India. The current Bharat NCAP crash test protocol is compared against the real road accidents and the frequency of the same in discussed in this paper. A seven-step calculation method is developed to analyse real accidents together with existing crash tests by using similar crash characteristics like impact area, overlap and direction of force. This method makes the real accident comparable with the corresponding crash test by calculating the impact energy during the collision between the real accident and a collision under crash test conditions. Relevant parameters in real accidents that significantly influence the test
Moennich, JoergLich, ThomasKumaresh, Girikumar
Existing ICE Mid and Heavy commercial vehicles in the Indian and international market are recording a large number of mishaps due to blind spots and non-accessibility of the driver to the opposite side mirror in real-time driving. Non-driver side rear view mirror adjustment creates the need for the driver to get down and adjust the mirror manually/get support from the co-passenger. The paper proposes a solution for a Microcontroller-based compact mirror adjustment system, which will run with minimal economy and highest efficiency. This will assist drivers in aesthetically and safely monitoring of mirror to check on specific blind spots in day conditions This will reduce the prone accidents due to non-visibility by approximately 30%, ensuring enhanced road safety and driver comfort. The Indian commercial vehicle segment needs this solution to be implemented when we look at the rate of increasing demand and also accident rates.
Jambagi, Vaibhavi VyankateshGangvekar, OnkarBhandari, Kiran Kamlakar
Traditionally, occupant safety research has centered on passive safety systems such as seatbelts, airbags, and energy-absorbing vehicle structures, all designed under the assumption of a nominal occupant posture at the moment of impact. However, with increasing deployment of active safety technologies such as Forward Collision Warning (FCW) and Autonomous Emergency Braking (AEB), vehicle occupants are exposed to pre-crash decelerations that alter their seated position before the crash. Although AEB mitigates the crash severity, the induced occupant movement leads to out-of-position behavior (OOP), compromising the available survival space phase and effectiveness of passive restraint systems during the crash. Despite these evolving real-world conditions, global regulatory bodies and NCAP programs continue to evaluate pre-crash and crash phases independently, with limited integration. Moreover, traditional Anthropomorphic Test Devices (ATDs) such as Hybrid III dummies, although highly
Pendurthi, Chaitanya SagarTHANIGAIVEL RAJA, TKondala, HareeshSudarshan, B.SudarshanNehe, VaibhavRao, Guruprakash
The world is moving towards data driven evolution with wide usage tools & techniques like Artificial Intelligence, Machine Learning, Digital Twin, Cloud Computing etc. In automotive sector, the large amount of data being generated through physical and digital test evaluations. Computer-Aided Engineering (CAE) is one of the highest contributors for data generation as physical testing involves high cost due to prototypes & test set-up. The Automotive Noise, Vibration & Harshness (NVH) field is advancing exponentially due to new stringent regulatory norms & customer preferences towards comfort, where digitally advanced techniques are playing a key role in the revolution of NVH. Data generation through CAE tool is a crucial aspect of Engineer’s daily activities and selecting such appropriate CAE software and solvers is critical, as it influences user interface experience, accuracy, solution time, hardware requirements, variability expertise, Design of Experiments ability, and integration
Hipparge, VinodMasurkar, NikitaArabale, VinandBillade, Dayanand
Mounting strategies for vehicles with panoramic sunroofs remains a challenge owing to its high complexity to balance cost, performance and assembly efficiency. Achieving efficient and reliable headliner mounting solutions is one of the conundrums where cost optimization must go together with uncompromised performance. Traditional methods like Dual Lock Fasteners (DLFs), have set high benchmarks for robustness but at the cost of increased manufacturing complexity and expense . In pursuit of a more economical and production-friendly alternative, various plastic clip designs were explored. However, these solutions posed significant challenges during validation due to the stringent requirements for mounting feasibility, tolerance management, and long-term durability This paper introduces a novel hybrid plastic-metal clip solution that addresses those challenges comprehensively. [2] The new design achieves precise tolerance control, ensuring reliable headliner installation under varying
D, GowthamKumarasamy, Raj GaneshShoeb, MohdChauhan, Aarti
Modern automotive systems are becoming increasingly complex, comprising tightly integrated hardware and software components with varying safety implications. As the demand for ISO 26262 compliance grows, performing efficient and consistent Hazard Analysis and Risk Assessment (HARA) across these layers presents both methodological and practical challenges. Traditional approaches often involve performing HARA for an item (where item maybe a system or a combination of systems), which can lead to update of HARA for every new feature addition in an item, which in turn may lead to analysis of same functions in multiple HARAs leading to inconsistent risk categorization, redundancy, or even conflicting safety goals. Therefore, this paper proposes a unique HARA methodology which consolidates the list of functions from various systems and performs the HARA for the grouped functions (hereby referred to as Cluster HARAs). For example, Electrical power steering, Electric pump powered hydraulic
Somasundaram, ManickamVijayakumar, Melvin
The regulatory mechanisms to measure emissions from automobiles have evolved drastically over the years. Certification of CO2 emissions is one of them. It is not only critical for environmental protection but can also invite heavy fines to OEMs, if not complied with. In homologation test of a Hybrid Vehicle, it is necessary to correct the measured CO2 to account for deviations in measurement from failed Start-Stop phase and difference between start and end State of Charge (SOC) of battery. The correction methodology is also applicable for vehicle simulation in Software-in-Loop environment and for analyzing vehicle test data for CO2 emissions with programmed digital tools. The focus of this paper is on the correction of CO2 derived from SOC delta in the WLTP homologation drive cycle. The battery energy delta due to difference in SOC between start and end of drive cycle should be converted to corresponding CO2 expended from Internal Combustion Engine. The resulting correction factor is
Gopinath, Shravanthi PoorigaliKhatod, Krishna
Brake response time in truck air brake systems is crucial for ensuring safety and operational efficiency. This paper details the development of a simulation model aimed at fulfilling all regulatory requirements for brake response time, as well as serving as a tool for stopping distance calculations. The actual pneumatic circuit, including brake valves, relay valves, brake chambers, and plumbing have been replicated. The aim is to use 1D simulations to predict the response time compliance during the pressurizing phase (when brakes are applied) of the brake system. A mathematical model is developed using a commercially available 1D simulation tool. This model employs a lumped parameter approach for the pneumatic components, with governing equations derived from compressible flow theory and empirical valve flow characteristics. The simulation outcomes provide detailed response time and pressure build-up profiles. Validation against 201 vehicle test cases showed 96% of simulations within
Kumbar, PrafulMurugesan, KarthikShannon, Rick
This invention solves a significant safety issue where drivers have low visibility of the Outside Rear View Mirror (ORVM) in the case of rain, fog, dust or ice formation on the Side Door Window Glass (SDWG). Currently developed methods, such as hydrophobic finishing or films and heated window glass on the doors, provide temporary or weak results, and thus, a more successful and dependable method is demanded. In order to address this problem, we have modified the Outer Waist Seal, which includes a Glass Wiping Mechanism in it. Outer Waist Seal is a type of weather strip fixed on the bottom of the side window of a vehicle on the panel of the door. It does not allow the flow of heavy water, dust and debris into the door cavity, besides supporting the glass on the window when it is in a movement process. The stationary fixed arm of this system is coupled with a rotating arm and an attached wiper blade powered by a low-speed-high-torque motor and interfaced with the Body Control Module (BCM
Neelam, RajatChowdhury, AshokPanchal, GirishKumar, Saurav
This paper investigates the current state of road safety for female occupants in India, with a particular focus on road accident statistics and the gaps in safety regulations. According to the Road Accident in India 2022 report by the Ministry of Road Transport and Highways (MoRTH), female occupants constitute 16% of passenger car fatalities. Using a extensive dataset of 596 passenger car accidents involving at least one female occupant from the Road Accident Sampling System – India (RASSI), this study evalu the severity and patterns of injuries sustained by female drivers and passengers. The analysis identifies critical shortcomings in existing safety measures, particularly in addressing anatomical differences and male-centric safety designs. Gender-sorted injury trends reveal heightened vulnerabilities for women in crash scenarios. Current regulatory frameworks bank on crash test dummies developed on average male anthropometry, neglecting female-specific biomechanical needs in
Ayyagari, ChandrashekharG, Santhosh KumarRao, Guruprakash
The invention tackles the main drawback of traditional electric vehicle charge ports which use Vehicle Control Unit (VCU) communication intensively and tend to have separate actuators to fulfill the locking function and requirements. These existing systems do not only limit autonomous operation of the charging lid in ignition-off condition but they also add mechanical complexity and packaging space, as well. To overcome these limitations, this research work introduces a Smart Charge Port Housing (CPH), which combines a rotary actuator with an onboard microcontroller and single shaft self-locking device, which allows intelligent and autonomous control of the flaps without relying on vehicle wide control networks. The actuator can remember the last position that the charging lid was in so it can be operated even while the VCU is in the inactive state. The integrated self-locking functionality is achieved by using a specially designed hinge shaft that allows a certain free play for
Mohunta, SanjayKhadake, Sagar
With increasing demand for improving the vehicle Ride and Handling (R&H) performance, the synergy between vehicle subsystems such as suspension, chassis, brakes & tyres play a major role towards it. In this regard, the interaction between wheel rim width and tyre performance characteristics is a key focus area in vehicle development process. Detailed research is being conducted worldwide to understand their dynamics of interaction and based on the tested data, vehicle manufacturers make the design selection. In this context, the proposed study aims to provide a in-depth analysis of how variations in wheel rim width affect key tyre performance parameters such as lateral force characteristics, damping property, tyre footprint, and pinch cut resistance. Also, the subsequent influence on vehicle-level performance parameters such as R&H, braking, steering, and durability is captured. Based on these analysis, appropriate wheel rim size selection is done which is most optimal for the project
Singh, Ram KrishnanPaua, KetanSundaramoorthy, RagasruobanLenka, Visweswaraahire, ManojAdiga, Ganesh N
As the brain and the core of the electric powertrain, the traction inverter is an essential part of electric vehicles (EVs). It controls the power conversion from DC to AC between the electric motor and the high-voltage battery to enable effective propulsion and regenerative braking. Strong and scalable inverter testing solutions are becoming more essential as EV adoption rises, particularly in developing nations like India. In India, traditional testing techniques that use actual batteries and e-motors present several difficulties, such as significant safety hazards, inadequate infrastructure, expensive battery prices, and a shortage of prototype-grade parts. This paper presents a comprehensive approach for traction inverter validation using the AVL Inverter TS™ system incorporating an advanced Power Hardware-in-the-Loop (PHiL) test system based on e-motor emulation technology. It enables safe, efficient, and reliable testing eradicating the need for actual batteries or mechanical
Mehrotra, SoumyaChhabra, Rishabh
Automotive displays have become an essential part of modern vehicles, not just for aesthetics but also for improving safety and user interaction. As cars get smarter, the industry is leaning heavily into advanced display technologies to provide drivers and passengers with clearer, more responsive visuals. Technologies like Active Matrix LCDs (AMLCDs) and AMOLEDs are now common in dashboards, infotainment systems, digital clusters, and even head-up displays. These display types are popular because they offer great brightness, vibrant color, and wide viewing angles — all of which are important in a car, where lighting conditions can change constantly. But to make these displays work effectively, a solid backplane is critical. That’s where technologies like amorphous silicon (a-Si) and low-temperature polysilicon (LTPS) come in. Among these, LTPS has gained popularity due to its ability to support high-resolution, high-refresh-rate screens, thanks to its higher carrier mobility. Still
Sinha Roy, DebarghyaDuggal, AnanyaSingh, Ujjwal Kumar
The automotive industry is rapidly advancing towards autonomous vehicles, making sensors such as Cameras, LiDAR, and RADAR critical components for ensuring constant information exchange between the vehicle and its surrounding environment. However, these sensors are vulnerable to harsh environmental conditions like rain, dirt, snow, and bird droppings, which can impair their functionality and disrupt accurate vehicle maneuvers. To ensure all sensors operate effectively, dedicated cleaning is implemented, particularly for Level 3 and higher autonomous vehicles. It is important to test sensor cleaning mechanisms across different weather conditions and vehicle operating scenarios to ensure reliability and performance. One crucial aspect of testing is tracking the trajectory of the cleaning fluid to ensure it does not cause self-soiling of vehicles and affects the field of view or visibility zones of other components like the windshield. While wind tunnel tests are valuable, digitalizing
Mane, SuvidyaMakam, Sri Lalith MadhavVarghese, RixsonDesu, Harsha