Your Destination for Mobility Engineering Resources
Recently Published
Browse AllThis specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
This paper presents the design and implementation of a Semi-Autonomous Light Commercial Vehicle (LCV) capable of following a person while performing obstacle avoidance in urban and controlled environments. The LCV leverages its onboard 360-degree view camera, RTK-GNSS, Ultrasonic sensors, and algorithms to independently navigate the environment, avoiding obstacles and maintaining a safe distance from the person it is following. The path planning algorithm described here generates a secondary lateral path originating from the primary driving path to navigate around static obstacles. A Behavior Planner is utilized to decide when to generate the path and avoid obstacles. The primary objective is to ensure safe navigation in environments where static obstacles are prevalent. The LCV's path tracking is achieved using a combination of Pure Pursuit and Proportional-Integral (PI) controllers. The Pure Pursuit controller is utilized as lateral control to follow the generated path, ensuring
Growing population in Indian cities has led to packed roads. People need a quick option to commute for both personal trips and business needs. The 2-3 Wheel Combination Vehicle is a new, modular solution that switches between a two-wheeler (2W) and a three-wheeler (3W). Hero has designed SURGE S32 to be a sustainable and flexible transportation option. It is world’s first class changing vehicle. The idea is to use a single vehicle for zipping through city traffic, making deliveries, or earning an income. Manufactured to deal with the challenges of modern life, this dual-battery convertible vehicle can easily transform from a two-wheeler to a three-wheeler and vice versa within three minutes. The Surge S32 is a versatile vehicle that replaces the need for multiple specialised vehicles. By lowering the number of vehicles on the road, it decreases road congestion, reduces emissions, and improves livelihoods. It powers by electricity, ensuring sustainability in all aspects. The current
The objective of this study was to examine the effect of Correlated Colour Temperature (CCT) of automotive LED headlamps on driver’s visibility and comfort during night driving. The experiment was conducted on different headlamps having different correlated colour temperatures ranging from 5000K to 6500K in laboratory. Further study was conducted involving participants of different age group and genders for understanding their perception to identify objects when observed in light of different LED headlamps with different CCTs. Studies have shown that both Correlated Colour Temperature and illumination level affect driver’s alertness and performance. Further study required on headlamps with automatically varying CCT to get better solution on driver’s visibility and safety.
In pursuit of a distinct sporty interior sound character, the present study explores an innovative strategy for designing intake systems in passenger vehicles. While most existing literature primarily emphasizes exhaust system tuning for enhancing vehicle sound quality, the current work shifts the focus toward the intake system’s critical role in shaping the perceived acoustic signature within the vehicle cabin. In this research work, target cascading and settings were derived through a combination of benchmark and structured subjective evaluation study and aligning with literature review. Quantitative targets for intake orifice noise was defined to achieve the desired sporty character inside cabin. Intake orifice targets were engineered based on signature and sound quality parameter required at cabin. Systems were designed by using advanced NVH techniques, Specific identified acoustic orders were enhanced in the intake system to reinforce the required signature in acceleration as well
As the brain and the core of the electric powertrain, the traction inverter is an essential part of electric vehicles (EVs). It controls the power conversion from DC to AC between the electric motor and the high-voltage battery to enable effective propulsion and regenerative braking. Strong and scalable inverter testing solutions are becoming more essential as EV adoption rises, particularly in developing nations like India. In India, traditional testing techniques that use actual batteries and e-motors present several difficulties, such as significant safety hazards, inadequate infrastructure, expensive battery prices, and a shortage of prototype-grade parts. This paper presents a comprehensive approach for traction inverter validation using the AVL Inverter TS™ system incorporating an advanced Power Hardware-in-the-Loop (PHiL) test system based on e-motor emulation technology. It enables safe, efficient, and reliable testing eradicating the need for actual batteries or mechanical














