Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
The Container trailers are used worldwide to transport goods & materials especially e-commerce applications with valuable materials. These container trailers are presently locked with a mechanical locking system and often broken and unlocked by unauthorized people. During transportation time, the driver stops the vehicle for natural calls, food or any other breakdown, the attempt is made to steal the materials. Many cases were known only after damages are done. It has become a serious issue nowadays in the transportation industry. To avoid these problems, we have designed and developed a system that operates pneumatically with digital locking control. The system is designed to ensure proper safety by rigid mechanical locking. It is actuated by a pneumatic system consisting of Directional control valve & pneumatic cylinders. The lock and unlock inputs are given through digitally and the digital controller provides the appropriate input to solenoid operated direction control valve. Based
kumaran, Rajasekar
To address the imperative for decarbonizing the heavy-duty transport sector and advancing sustainable energy solutions, this paper presents a novel lean-boosted Direct Injection (DI) Hydrogen Internal Combustion Engine (H2 ICE) combustion system. This system is developed to retrofit existing flat-deck Diesel engines, offering a viable pathway towards drastically reduced emissions. Building on consolidated expertise from prior production-oriented Port Fuel Injection H2 engine development (DUMAREY 6.6ℓ V8), this research focuses on leveraging the distinct advantages of DI for hydrogen. An experimental assessment, supported by 1D and 3D-CFD analyses, demonstrates the system's capability to achieve highly efficient operation in Spark Ignition (SI) mode under ultra-lean and EGR-diluted conditions. The study confirms the elimination of combustion anomalies such as backfiring, pre-ignition, and knock, while achieving ultra-low engine-out NOx emissions and near-zero CO2, HC, CO, and PM. The
Gessaroli, DavideGolisano, RobertoPesce, FrancescoBoretto, GianmarcoAccurso, Francesco
High Voltage cables and terminals are prone to high temperatures and rapid heat generation due to high current ratings, especially in electric vehicles (EVs). If the temperature exceeds a critical limit, danger may be posed to the components which are connected and the overall safety of the passengers. Traditionally, cooling methods are often energy-intensive and rely on active systems, which may not always be practical for high-power applications. Thus, a localized, fast, and reliable passive thermal management methodology that can be retrofitted into existing connector designs through modifications (e.g., enlargement and PCM integration) would provide significant safety enhancement. The material property of phase change materials, which possess high latent heat, has been used to maintain a steady temperature for a period of time. A dual PCM-layer has been incorporated into the design of the high-voltage connector to serve two purposes:1. The first PCM layer (PCM-1), with good
Neogi, AngshumanShinde, Shardul
Fuel cell - as name suggests, it generates energy from fuel (Hydrogen). A three-input system produces three different outputs: electrical energy, heat, and pure water. Fuel cell can produce decent power depending on design of active area and possible current density. Overall required power output which is generated by a series of cells stacked together. The design once meets all the required performance parameters at single cell level, can be extrapolated to stack level design. The present work elaborates successful testing and validation of a compact, light weigh single cell fuel cell fixture. Further the design will be scaled to a fuel cell stack design with a capacity of 5 kW to cater various stationary application such as back-up/stand-alone power generator for remote location. The same design philosophy will also be implemented in fuel cell stack design for automobile applications. The membrane electrode assembly (MEA) is heart of the fuel cell which produces the output while
Pandit`, Abhishek RajshekharChougule, AbhijeetKhot, RanjitChaudhari, Shirish
As the transportation industry pivots towards safer and more sustainable mobility solutions, the role of advanced surface technologies is becoming increasingly critical. This paper presents a novel application of electroluminescent (EL) coating systems in heavy-duty trucks, exploring their potential to enhance vehicular safety and reduce environmental impact through lightweight, energy-efficient lighting integration. Electroluminescent coatings, capable of emitting light uniformly across painted surfaces when electrically activated, offer a transformative alternative to conventional external lighting and reflective materials. In the context of heavy-duty trucks, these systems can significantly improve visibility under low-light and adverse weather conditions, thereby reducing the risk of road accidents. Furthermore, the uniform illumination achieved without bulky fixtures contributes to aerodynamic efficiency, supporting fuel economy and reducing carbon emissions. use of this coating
Harel, Samarth DattatrayaBorse, ManojL, Kavya
A mobile wireless charger is a device that charge a smartphone or other compatible gadgets without the need for physical cables. Principle of wireless mobile charger system based on inductive coupling phenomena. The main objective of this paper aims to address the challenge of packaging wireless mobile charger in peculiar door trim profile keeping overall functionality and aesthetic appearance of door trim intact. This paper deals with integration of a wireless charging system within the door trim of a vehicle to provide convenience and advanced functionality. The objective is to pack a wireless charger in door trim meeting the ergonomic target and equilibrium state stability while maintaining sleek and minimalist design of the door trim. The study focuses on innovative packaging solutions related to space optimization in door despite multiple challenges involved. Major challenge lies in packing the unit amidst complex mechanisms such as window regulators, speakers, structural
Palyal, NikitaD, GowthamBhaskararao, PathivadaKumarasamy, Raj GaneshBornare, Harshad
This paper is a new approach to improve road safety and traffic flow by combining vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. The Study is focused on a system that connects vehicles with each other and with traffic light to share real-time data about speed and position. This work is aimed to discuss the methodology adopted for developing a system which predicts and advises the optimal speed for vehicles approaching an intersection. Inspired by the Green Light Optimized Speed Advisory (GLOSA) , the proposed system is designed to help drivers approach traffic signals at speeds that minimize unnecessary stops, reduce delays, and improve traffic efficiency. This paper contains the approach taken, the decision-making algorithm, and the simulation framework built in MATLAB/Simulink to validate the concept under real traffic conditions. Simulation results are presented to demonstrate how the system generates speed recommendations based on vehicle parameters
Pinto, Colin AubreyShah, RavindraKarle, Ujjwala
Air pollution is profligate becoming a serious worldwide problem with the increasing population and its subsequent demands. Diesel, Gasoline, Natural Gas, Propane, etc., are some of the traditional fuels used in the power generation sectors. Diesel fuel, popularly utilized for backup power in critical operations, is valued for its swift activation time. This makes diesel generators a preferred choice for commercial properties and hospitals requiring reliable emergency power. Moreover, natural gas, distributed through local utility grids, provides a convenient and readily available fuel source for generators, eliminating the need for on-site fuel storage. On the other hand, CPCB has instructed to modify the emission regulations for genset engines for decarbonization and development clean fuel. The change from CPCB II to CPCB IV+ standard shows the commitment of the Indian government towards environmental sustainability and COP26. Pondering to the stringent emission norms, researchers
Bandyopadhyay, DebjyotiSutar, Prasanna SDhar, Rit PrasadSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut SSingh, SauhardMishra, Sumit KumarBera, TapanBadhe, RajeshTule, ShubhamAghav, YogeshLakshminarasimhan, Krishna
Potholes are a common road hazard that significantly compromise road safety. Water filled potholes can be particularly dangerous. These hidden hazards may cause vehicles to hydroplane [1], leading to a loss of control and potential collisions. At night or in low visibility conditions, such potholes can appear deceptively shallow, increasing the risk of severe suspension damage or tire blowouts. Additionally, deep water intrusion can affect critical components such as the exhaust system, air intake, or electrical wiring, potentially leading to engine stalling or short circuits. This research proposes a novel approach for identifying and determining the depth of potholes, especially those that are filled with water. By integrating YOLO, cutting edge computer vision methods like stereo imaging and Lidar. We hope to create a system that can precisely detect and evaluate potholes' severity, reducing the risks connected to these road hazards. A structured 2k factorial Design of Experiment
Ashok, DeekshaKumar, PradeepSingh, Amandeep
Environmental pollution is one of the growing concerns of our society. As vehicle emissions are a major contributor to air pollution, emission control is a primary goal of the Automotive industry. Vehicle emissions are higher due to improper combustion, which leads to toxic gases being generated from the exhaust system. Unburnt fuel is one of the leading causes of toxic pollutants such as Carbon Monoxide, Nitric Oxides (NOx) and Hydrocarbons. The catalytic converter converts these gases into less toxic substances such as Carbon Dioxide, Nitrogen, and water vapor. The catalytic converter performs efficiently after reaching its “Light Off” temperature, after which the catalyst becomes active. Hence, elevated temperature of the exhaust gases aids in efficient conversion. Presently, the gases from the exhaust system are approximately at a temperature of 300°C-600°C. This paper outlines the concept of a Peltier (Thermoelectric) Module - based system, which helps maintain the high
Venkateshwaran, AishwaryaSoodlu, ShashikiranM, Mathaiyan
Growing global warming and the associated climate change have expedited the need for adoption of carbon-neutral technologies. The transportation sector accounts for ~ 25 % of total carbon emissions. Hydrogen (H2) is widely explored as an alternative for decarbonizing the transport sector. The application of H2 through PEM Fuel Cells is one of the available technologies for the trucking industry, due to their relatively higher efficiency (~50%) and power density. However, at present the cost of an FCEV truck is considerably higher than its diesel equivalent. Hence, new technologies either enabling cost reduction or efficiency improvement for FCEVs are imperative for their widespread adoption. FCEVs have a system efficiency around 40-60% implying that around half of the input energy is lost to the environment as waste heat. However, recapturing this significant amount of waste heat into useful work is a challenge. This paper discusses the feasibility of waste heat recovery (WHR
P V, Navaneeth
Hydrogen Fuel Cell Electric Vehicles (FCEVs) represent a significant trajectory in vehicular decarbonization, harnessing the inherently high energy density of diatomic hydrogen within electrochemical conversion systems. When sourced via renewable pathways, such hydrogen facilitates propulsion architectures characterized by zero tailpipe emissions, enhanced energy efficiency, and extended operational range profiles. Realizing peak systemic efficacy necessitates the synergistic orchestration of high-fidelity fuel cell stack design, resilient compressed gas storage modalities, and nuanced energy governance protocols. To reduce transient stressors and guarantee long-term electrochemical stability, employing multi-scale modeling and predictive simulation, combined with constraint-aware architectural synthesis, is crucial in handling stochastic driving conditions spectra. This study develops a high-fidelity mathematical plant model of a hydrogen Proton Exchange Membrane (PEM) fuel cell
Mulik, Rakesh VilasraoE, PorpathamSenthilkumar, Arumugam
This paper presents an analysis of the Indian patent landscape concerning alternative fuels, with a specific focus on hydrogen fuel cells and hydrogen internal combustion engines (H2 ICEs). The study aims to provide insights into the innovation trends, key players, white spaces and technological advancements, in this evolving sector within the Indian context. The study is based on the granted patents and disclosures in the said area, and also focuses on the key problems and solutions. Based on a review of patent publications from January 2024 to March 2025, it was observed that a significant number of patent records pertain to the broader domain of hydrogen internal combustion engine disclosures. Specifically, 540 extended families patent publications were screened focusing on hydrogen internal combustion engine as a domain of disclosure. Further analysis revealed that greater 75 % of applicants were from the industry sector, indicating a strong commercial interest in these
Nikam, Mahesh SureshSutavane, IlaV, AjayAghav, Yogesh
Over the last few years, notable progress has occurred in electric vehicle (EV) technology. Inverters are key components for electric vehicles (EV). Various PWM strategies have been implemented by OEMs over past years. For most of PWM scheme timing calculation & Lengthy algorithm increases complexity. The proposed a novel Pulse Width Modulation (PWM) control technique for generating inverter lag switching times in multi-level inverters. The proposed Space Vector PWM (SVPWM) method eliminates the need for sector and region identification by utilizing sampled values of reference phase voltages, thereby reducing computational efforts and complexities. The scheme can generate N-level PWM signals and offers flexibility to operate with fewer levels, including operation in the overmodulation range. The sampled magnitudes reference phase voltages are converted into timing signals that are subsequently processed by an algorithm to modify modulating signals. These modulating signals are
Bhanabhagvanwala, Prem Kiritkumar
Meeting the stringent emissions norms of CEV stage V for medium BMEP engines, CI engines present significant challenges. These stringent norms call for a highly efficient DPF. With the increasing demands for high-performance DPFs, the issue of soot accumulation and cleaning presents significant hurdles for DPF longevity. This paper explores the potential of passive DPF regeneration, which leverages naturally occurring exhaust gas conditions to oxidize accumulated soot, offering a promising approach to minimize fuel penalty and system complexity compared to active regeneration methods. The study investigates engine calibration techniques aimed at enhancing passive regeneration performance, emphasizing the optimization of thermal management strategies to sustain DPF temperatures within the passive regeneration range. Furthermore, the paper aims to expand the applicability of passive regeneration across diverse engine loads common in off-highway applications with effective passive
Saxena, HarshitGandhi, NareshLokare, PrasadShinde, PrashantPatil, AjitRaut, Ashish
Precise estimation of power metrics like active power, reactive power and apparent power is mandatory for effective control and monitoring of three phase power systems. On the other hand there might be challenges like waveform distortion, noisy signals and unbalanced load circumstances. traditional methods may not always provide accuracy in such an environment thus to address that in this study, we are using cross correlation and zero crossing methods to estimate power parameters of a three phase system. We are using these signal processing techniques to find phase angle, which in turn determines all other power parameters like active power, reactive power, apparent power, power factor. While Cross correlation tracks both the signals at different time lags and evaluate similarity between both the signals, zero crossing point approach identifies some particular locations where signal crosses zero axis. This analysis can be used in various applications such as power parameters monitoring
Panchal, Sanjivani VishwanathRoy, Sandipan
The need for energy is ever increasing, though the dependency on renewable energy have increased, it is not sufficient to cater the demand. India is one of fastest developing country which depends on coal 55% for its total energy need. To achieve coal digging & transportation an underground mining vehicle has gained high importance. Underground mine environment is inherently dangerous due to various factors, including explosive and toxic gases, dust, and the potential for collapses. Thereby vehicles running in coal mines requires extreme safety features to safeguard its operator & coal mine workers. In India the Directorate General of Mines Safety (DGMS) under Government of India circulates notification to Manager of Coal and Metalliferous Mines & OEM, concerned about the minimum safety evaluations to be taken care for the mining trucks. It has been observed that there are significant inconsistencies in design practices for mining vehicles, with the presence of multiple, unverified
Babar, SagarAkbar Badusha, A
The objective of this study was to examine the effect of Correlated Colour Temperature (CCT) of automotive LED headlamps on driver’s visibility and comfort during night driving. The experiment was conducted on different headlamps having different correlated colour temperatures ranging from 5000K to 6500K in laboratory. Further study was conducted involving participants of different age group and genders for understanding their perception to identify objects when observed in light of different LED headlamps with different CCTs. Studies have shown that both Correlated Colour Temperature and illumination level affect driver’s alertness and performance. Further study required on headlamps with automatically varying CCT to get better solution on driver’s visibility and safety.
Patil, Mahendra G.Kirve, JyotiParlikar, Padmakumar
Automotive displays have become an essential part of modern vehicles, not just for aesthetics but also for improving safety and user interaction. As cars get smarter, the industry is leaning heavily into advanced display technologies to provide drivers and passengers with clearer, more responsive visuals. Technologies like Active Matrix LCDs (AMLCDs) and AMOLEDs are now common in dashboards, infotainment systems, digital clusters, and even head-up displays. These display types are popular because they offer great brightness, vibrant color, and wide viewing angles — all of which are important in a car, where lighting conditions can change constantly. But to make these displays work effectively, a solid backplane is critical. That’s where technologies like amorphous silicon (a-Si) and low-temperature polysilicon (LTPS) come in. Among these, LTPS has gained popularity due to its ability to support high-resolution, high-refresh-rate screens, thanks to its higher carrier mobility. Still
Sinha Roy, DebarghyaDuggal, AnanyaSingh, Ujjwal Kumar
With increasing demand for improving the vehicle Ride and Handling (R&H) performance, the synergy between vehicle subsystems such as suspension, chassis, brakes & tyres play a major role towards it. In this regard, the interaction between wheel rim width and tyre performance characteristics is a key focus area in vehicle development process. Detailed research is being conducted worldwide to understand their dynamics of interaction and based on the tested data, vehicle manufacturers make the design selection. In this context, the proposed study aims to provide a in-depth analysis of how variations in wheel rim width affect key tyre performance parameters such as lateral force characteristics, damping property, tyre footprint, and pinch cut resistance. Also, the subsequent influence on vehicle-level performance parameters such as R&H, braking, steering, and durability is captured. Based on these analysis, appropriate wheel rim size selection is done which is most optimal for the project
Singh, Ram KrishnanPaua, KetanSundaramoorthy, RagasruobanLenka, Visweswaraahire, ManojAdiga, Ganesh N
The invention tackles the main drawback of traditional electric vehicle charge ports which use Vehicle Control Unit (VCU) communication intensively and tend to have separate actuators to fulfill the locking function and requirements. These existing systems do not only limit autonomous operation of the charging lid in ignition-off condition but they also add mechanical complexity and packaging space, as well. To overcome these limitations, this research work introduces a Smart Charge Port Housing (CPH), which combines a rotary actuator with an onboard microcontroller and single shaft self-locking device, which allows intelligent and autonomous control of the flaps without relying on vehicle wide control networks. The actuator can remember the last position that the charging lid was in so it can be operated even while the VCU is in the inactive state. The integrated self-locking functionality is achieved by using a specially designed hinge shaft that allows a certain free play for
Mohunta, SanjayKhadake, Sagar
Special vehicles such as off-road vehicles and planetary rovers frequently operate on complex, unpaved road surfaces with varying mechanical parameters. Inaccurate estimation of these parameters can cause subsidence or rollover. Existing methods either lack proactive perception or high precision. This article proposes a fusion framework integrating a visual classifier and a dynamics observer for stable, accurate estimation of road surface parameters. The visual classifier uses an adaptive segmentation system for unpaved roads, leveraging a large-scale vision model and a lightweight network to classify upcoming road surfaces. The dynamics observer employs an online wheel-–ground interaction model using stress approximation, integrating strong tracking theory into an unscented Kalman filter for real-time parameter estimation. The fusion framework performs integration of the classifier and observer outputs at data, feature, and decision levels. An adaptive fading factor and recursive
Zhang, ChenhaoXia, GuangZhang, YangZhou, DayangShi, Qin
Heavy tipper vehicles are primarily utilized for transporting ores and construction materials. These vehicles often operate in challenging locations, such as mining sites, riverbeds, and stone quarries, where the roads are unpaved and characterized by highly uneven elevations in both the longitudinal and lateral directions of vehicle travel. During the unloading process, the tipper bodies are raised to significant heights, which increases the vehicle's centre of gravity, particularly if the payload material does not discharge quickly. Such conditions can lead to tipper rollover accidents, causing severe damage to life and substantial vehicle breakdowns. To analyse this issue, a study is conducted on the vehicle design parameters affecting the rollover stability of a 35-ton GVW tipper using multi-body simulations in ADAMS software. The tilt table test was simulated to determine the table angle at which wheel lift occurs. Initially, simulations are performed with the rigid body model
Vichare, Chaitanya AshokPatil, SudhirGupta, Amit