Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 176

Recent Books

Browse All 709

Recently Published

Browse All
2024–2025 Reviewers
El-Sayed, Mohamed
This SAE Aerospace Standard (AS) provides dimensions and procedures for a standardized test fixture used to evaluate the static performance of O-rings and other seal types in glands per AS4716 and AS5857.
AMS CE Elastomers Committee
This SAE Standard provides test procedures, performance requirements, and guidelines for semiautomatic headlamp beam switching (SHBSD) devices.
Road Illumination Devices Standards Committee
This SAE Standard provides general and dimensional specifications for low-pressure quick connect hose fittings used in conjunction with hoses specified in SAE J20, SAE J30, and SAE J517 and utilized in fluid systems on mobile and stationary equipment. The fittings in this standard are compatible with SAE J2044. This document specifies hose fitting geometry. It does not specify fluid compatibility. This document shall be utilized as a procurement document only to the extent agreed upon by the manufacturer and user. Refer to SAE J517 for information on hose assemblies. SAE J1273 contains information on application factors affecting hose fittings, hose, and hose assemblies. The rated working pressure of a hose assembly comprising SAE J3275 fittings and SAE J20, SAE J30, and SAE J517 hoses shall not exceed the lower of the two working pressure rated values.
Non-Hydraulic Hose Committee
This SAE Aerospace Information Report (AIR) provides a general description of methods for hardness testing of O-rings including factors which affect precision and comparison of results with those obtained in standard tests.
AMS CE Elastomers Committee
This document establishes training guidelines applicable to fiber optics engineer technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Trainers/Instructors Third Party Maintenance Agencies Production
AS-3 Fiber Optics and Applied Photonics Committee
2024-2025 Reviewers
Yilmaz, Nadir
This document establishes training guidelines applicable to fiber optic technician, quality assurance, or engineer technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
AS-3 Fiber Optics and Applied Photonics Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This specification describes the engineering requirements for producing a non-powdery anodic coating on titanium and titanium alloys and the properties of such coatings.
AMS B Finishes Processes and Fluids Committee
Letter from the Guest Editors
He, XinBelgiorno, GiacomoJoshi, Ameya
This document establishes training guidelines applicable to fiber optic technician technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
AS-3 Fiber Optics and Applied Photonics Committee
This document establishes training guidelines applicable to fiber optic quality assurance technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
AS-3 Fiber Optics and Applied Photonics Committee
This document establishes training guidelines applicable to fiber optic installer technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Logisticians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Shipping Receiving Production Purchasing
AS-3 Fiber Optics and Applied Photonics Committee
The free-piston engine represents a paradigm shift in internal combustion engine technology, with its unique structure promising efficiency gains. However, injection parameters are one of the core elements of free-piston engine performance. This study employs computational fluid dynamics analysis to optimize the spray cone angle and start of injection timing for a two-stroke dual-piston opposed free-piston engine equipped with a flat-head combustion chamber. A three-dimensional transient model incorporating dynamic adaptive mesh refinement was constructed by using CONVERGE 3.0 software. The results indicate that a spray cone angle of 25° achieves optimal fuel distribution, yielding a peak indicated thermal efficiency of 42.14% and an indicated mean effective pressure of 9.08 bar. Crucially, advancing the ignition timing to 215°CA improves mixture homogeneity but simultaneously increases peak cylinder temperatures and NOx. Conversely, delayed start of injection timings reduces NO
Xu, ZhaopingYang, ShenaoLiu, Liang
Aiming at the problem of efficiency loss caused by the independent optimization of traditional vehicle - cargo matching and route planning, this paper proposes a spatio - temporal collaborative optimization model. By constructing three - dimensional decision variables to describe the “vehicle - cargo - route” mapping relationship, a multi - objective mixed - integer programming model considering transportation costs, time - window constraints, and carbon emissions is established. An improved NSGA - II algorithm is designed to solve the Pareto optimal solution set, and the TOPSIS method is combined to achieve scheme optimization. Experiments show that the collaborative optimization model reduces the comprehensive cost by an average of 12.7% and the vehicle empty - running rate by 18.4% compared with the traditional two - stage method.
Yang, MeiruLiu, Jian
This study investigates urban traffic congestion optimisation strategies based on V2X technology. V2X technology (Vehicles and Internet of Everything) aims to alleviate urban traffic congestion, improve access efficiency, and reduce tailpipe emissions through real-time collection and fusion of traffic data to optimise traffic signal control and path planning. The efficacy of the optimisation strategies under different V2X penetration rates is evaluated by conducting multi-factor orthogonal experiments in different typical congestion scenarios. The experimental results show that the V2X-based signal optimisation, path induction, and event response combination strategies exhibit significant optimisation effects in all three scenarios: node bottleneck, corridor congestion, and event induction. Under the condition of 100% penetration, the combined strategy reduces delay by 41.9% in the node bottleneck scenario, improves accessibility by 28.1% in the corridor congestion scenario, and
Xi, ChaohuLi, JiashengQu, FengzhenLiu, HongjunLiu, XiaoruiWang, Chunpeng
(TC)The paper presents a designed and evaluated optimal traction control (TC) strategy for unmanned agriculture vehicle, where onboard sensors acquire various real-time information about wheel speed, load sharing, and terrain characteristics to achieve the precise control of the powertrain by establishing an optimal control command; moreover, the developed AMT-adaptive SMC combines the AMT adaptive control algorithm and the SMC to implement the dynamic gear shifting, torque output, and driving mode switching to obtain an optimal power distribution according to different speed demand and harvest load. Based on the establishment of models of the autonomous agriculture vehicle and corresponding tire model, a MATLAB/Simulink method based on dynamic simulation is adopted to simulate the unmanned agricultural vehicle traversing different terrains conditions. The results from comparison show that the energy saving reaches 19.0%, rising from 2. 1 kWh/km to 1. 7 kWh/km, an increase in
Feng, ZhenghaoLu, YunfanGao, DuanAn, YiZhou, Chuanbo
The analysis of the current subsidy scheme for China Europe Express shows that its effectiveness is limited to lines starting from inland cities and lines with unsaturated demand. A bi-level subsidy optimization model was constructed and Tabu Search algorithm was applied to solve the optimization subsidy plan. The evaluation results of the optimization subsidy scheme indicate that it can more effectively increase the market share of CRE, regulate the balance of freight supply and demand to a certain extent, reduce capacity vacancies, and alleviate line congestion.
Mai, YuanyuanTian, Chunlin
As one of the main indexes of functional safety evaluation, controllability is of critical significance. According to ISO26262 standard, by analyzing the impact of potential faults such as unexpected torque and regenerative braking force loss on vehicle controllability under different working conditions, this paper designs a vehicle controllability test scheme under abnormal motor function under multiple scenarios such as straights, lane changes and curves, and builds a test scheme under abnormal motor function. The mapping relationship between vehicle dynamic state data and controllability level provides a new idea for quantitative analysis of vehicle controllability.
Yang, XuezhuHe, LeiLi, ChaoRen, Zhiqiang
To better match lane usage with changing traffic needs at intersections, this study proposes a method that uses deep reinforcement learning to optimize variable guidance lanes. We apply the DDPG algorithm and introduce a feature weight adjustment mechanism that changes in real time. It reacts to key traffic indicators such as vehicle flow, average delay, and peak delay. This helps the model respond more flexibly and improves its ability to handle different situations. To make the output actions easier to manage, we revise the sigmoid function used for discretization. The reward function is also designed carefully, aiming to keep lane changes smooth and stable. We test our method in a SUMO-simulated intersection. The results show that it outperforms both fixed lane strategies and standard DDPG models. It reduces delays, lowers queue lengths, and moves more traffic through the intersection, proving its value in real-world-like settings.
Zhang, WeiZhang, Fusheng
This study investigates the critical factors influencing the performance of hydro-pneumatic suspension systems (HPSS) in mining explosion-proof engineering vehicles operating in complex underground coal mine environments. To address challenges such as poor ride comfort and insufficient load-bearing capacity under harsh mining conditions, a two-stage pressure HPSS was analyzed through integrated numerical modeling and field validation. A mathematical model was established based on the structural principles of the suspension system, focusing on key parameters including cylinder bore (195–255 mm), piston area (170–210 mm), damping orifice diameter (7–8 mm), check valve flow area, and accumulator configurations (low-pressure: 1.2 MPa, high-pressure: 6 MPa). Experimental trials were conducted in active coal mines, simulating typical mining scenarios such as uneven road surfaces (120 mm obstacles), heavy-load gangue transportation, and confined-space operations in thin coal seams (<1.5 m
Song, YanLiang, Yufang