Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 719

Recently Published

Browse All
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered. The integration of NBC
AC-9 Aircraft Environmental Systems Committee
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
The transition to electric vehicles (EVs) has brought about significant advancements in automotive technology, with inverters playing a crucial role in converting DC power from the battery to AC power for the electric motor. Ensuring the functional safety of these inverters is paramount, as any failure can have severe implications for vehicle performance and passenger safety. This case study explores the successful implementation of ISO 26262 standards in the development and validation of EV traction inverters. This paper begins by outlining the functional requirements and safety goals specific to EV inverters, followed by a detailed analysis of the potential hazards and risks associated with their operation. Using ISO 26262 as a framework, we describe the systematic approach taken to identify, assess, and mitigate these risks. Key methodologies such as Hazard Analysis and Risk Assessment (HARA), Failure Mode and Effects Analysis (FMEA), and Fault Tree Analysis (FTA) are employed to
Ramachandra, ShwethaV, Sushmitha
Artificial Intelligence and Machine learning models have a large scope and application in Automotive embedded systems. These models are used in the automotive world for various applications like calibration, simulation, predictions, etc. These models are generally very accurate and play the role of a virtual sensor. However, the AI/ML models are resource intensive which makes them difficult to execute on largely optimized automotive embedded systems. The models also need to follow safety standards like ASIL-D. The current work involves creating a Global DoE with ETAS ASCMO to generate data from a 125cc single to create AI/ML model for the engine outputs like Torque, T3, Mid-cat temperatures etc. The created models were validated across the operating space of the engine and found to have good accuracies. With ETAS Embedded AI Coder, the torque and T3 prediction AI models were converted to embedded code which can be easily used as a virtual sensor in real time. Using these AI models
Chouhan, Vineet SinghBulandani, SaurabhKumar, AlokVarsha, AnuroopaP R, Renjith
The lateral and longitudinal dynamics of passenger car tyres are critical to overall vehicle safety, handling, and stability. These characteristics directly influence braking, acceleration, and cornering performance. This study investigates the impact of key input parameters, namely inflation pressure, vertical load, and inclination angle, on tyre behaviour using a dual approach: Indoor testing with a Flat-Trac CT+ (FTCT+) and Outdoor evaluation using a skid trailer. Lateral dynamics are evaluated at slip angles to analyze lateral force and aligning moment characteristics. The influence of inclination angle, pressure, and load is quantified through cornering stiffness and aligning stiffness. The tests are conducted in both sweep and steady-state modes. To maintain data consistency, all tests use tyres of a single specification sourced from the same production batch. Longitudinal behaviour of a tyre is characterized by various parameters such as peak friction coefficient, sliding
Sethumadhavan, ArjunDuryodhana, DasariTomer, AvinashGhosh, PrasenjitMukhopadhyay, Rabindra
The Mahindra XUV 3XO is a compact SUV, the first-generation of which was introduced in 2018. This paper explores some of the challenges entailed in developing the subsequent generation of this successful product, maintaining exterior design cues while at the same time improving its aerodynamic efficiency. A development approach is outlined that made use of both CFD simulation and Coastdown testing at MSPT (Mahindra SUV proving track). Drag coefficient improvement of 40 counts (1 count = 0.001 Cd) can be obtained for the best vehicle exterior configuration by paying particular attention to: AGS development to limit the drag due to cooling airflow into the engine compartment Front wheel deflector optimization Mid underbody cover development (beside the LH & RH side skirting) Wheel Rim optimization In this paper we have analyzed the impact of these design changes on the aerodynamic flow field, Pressure plots and consequently drag development over the vehicle length is highlighted. An
Vihan, Nikhil
ISO/SAE 21434 emphasizes comprehensive cybersecurity risk management throughout the automotive lifecycle. However, specific guidance on validating cybersecurity measures at the production level remains limited. This paper addresses the gap in production-stage validation, particularly after End-of-Line (EOL) flashing, which includes configurations of security hardware and software protection (e.g., hardware register configuration, Debug and P-flash password settings etc.) Current automotive cybersecurity validation methods, despite adherence to ISO/SAE 21434, lack specific procedures for the production stage. The existing system-level validation using the ASPICE V-model (e.g., SWE.6, SYS.5) does not ensure the integrity and functionality of cybersecurity features in the final manufactured unit post-EOL flashing. This gap poses a risk of vulnerabilities being introduced during the EOL process, compromising critical security measures. To mitigate the cybersecurity risks in production
Chakraborty, SuchetaKulanthaisamy, NagarajanSankar, Ganesh
The rising demand for electric vehicles (EVs) has pushed automakers to prioritize visual brand consistency across both EVs and internal combustion engine (ICE) vehicles. A main design factor which is influenced by this trend is the front grille. In order to achieve uniform aesthetic looks, passenger car manufacturers often reduce the front grille openings and limit airflow. This closed grille style is common in electric vehicle. However, this creates challenges for internal combustion engine (ICE) vehicles with snorkel-type air intake systems, leading to reduced airflow and higher temperatures in the engine bay and intake air which eventually gets sucked in the engine resulting in low volumetric efficiency. Maintaining a cooler intake air is vital for ICE performance. Adjusting snorkel position and airflow patterns in low temperature zones ensures the engine receives air at low temperatures. This improves the combustion efficiency, throttle response and eventually it reduces the risk
Sonone, Sagar DineshSingh, Nil KanthKolhe, Vivek MKulkarni, ChaitanyaMalekar, Hemant A
The automotive industry is advancing rapidly with the integration of cutting-edge technology, aesthetics, and performance. One area that has remained relatively underexplored in the pursuit of sleek, minimalistic interiors is the packaging of Sunshade in door trim system. Traditional sunshade design, often bulky and increasingly incompatible with the trend towards compact design and packaging. The car sunshade is a shield that is placed on a car side window and used for regulating the amount of light entering from the car window and helps improve the passenger comfort inside the cabin. Car Interior components, specifically plastic and seats are based on thermal stress properties. When we expose these parts to direct contact with sunlight, humidity and ambient temperature above threshold limit, the interior plastic parts can start to soften and melt. Due to this, they start emitting harmful chemicals which cause anemia and poor immune systems. So, the Sunshade, in addition to protecting
Palyal, NikitaD, GowthamBhaskararao, PathivadaBornare, HarshadRitesh, Kakade
Parking in confined spaces can be quite challenging. It is often a herculean task to align the vehicle in the parking slots where the driver has to make several attempts to park properly. One such ingenious technology that augments vehicle handling, directional controlling and overall driving agility is torque vectoring. It is becoming a pioneer in creating smarter, more responsive vehicles unlike traditional vehicles. With torque vectoring, EV’s can precisely control the torque delivered to each wheel with independent motors per wheel. In confined spaces as well by selectively distributing torque to individual wheels, it optimizes traction and vehicle control, making tasks like parking, sharp turns, and navigating narrow streets smoother and more efficiently. This paper confers about the use of torque vectoring techniques in electric vehicles for smoother and more proficient vehicles handling in tight spaces like parking, which significantly reduces driver efforts while maximizing the
Gangad, Vikas ShridharGautam, EraChaudhari, GiteshPenta, Amar
Over the last few years, notable progress has occurred in electric vehicle (EV) technology. Inverters are key components for electric vehicles (EV). Various PWM strategies have been implemented by OEMs over past years. For most of PWM scheme timing calculation & Lengthy algorithm increases complexity. The proposed a novel Pulse Width Modulation (PWM) control technique for generating inverter lag switching times in multi-level inverters. The proposed Space Vector PWM (SVPWM) method eliminates the need for sector and region identification by utilizing sampled values of reference phase voltages, thereby reducing computational efforts and complexities. The scheme can generate N-level PWM signals and offers flexibility to operate with fewer levels, including operation in the overmodulation range. The sampled magnitudes reference phase voltages are converted into timing signals that are subsequently processed by an algorithm to modify modulating signals. These modulating signals are
Bhanabhagvanwala, Prem Kiritkumar
Addressing the challenge of optimal strain gauge placement on complex structural joints and pipes, this research introduces a novel methodology combining strategic gauge configurations with numerical optimization techniques. Traditional methods often struggle to accurately capture combined loading states and real-world complexities, leading to measurement errors and flawed structural assessments [9]. For intricate joints, a looping strain gauge configuration is proposed to comprehensively capture both bending and torsional effects, preventing the bypassing of applied loads. A calibration technique is used to create strain distribution matrices and access structural behavior under different loading conditions. Optimization algorithms are then applied to identify gauge placements that yield well-conditioned matrices, minimizing measurement errors and enhancing data reliability. This approach offers a cost-effective solution by reducing the number of gauges required for accurate stress
Shingate, UttamYadav, DnyaneshwarDeshpande, Onkar
The automotive industry is rapidly evolving with technologies such as vehicle electrification, autonomous driving, Advanced Driver Assistance Systems (ADAS), and active suspension systems. Testing and validating these technologies under India’s diverse and complex road conditions is a major challenge. Physical testing alone is often impractical due to variability in road surfaces, traffic patterns, and environmental conditions, as well as safety constraints. Virtual testing using high-fidelity digital twins of road corridors offers an effective solution for replicating real-world conditions in a controlled environment. This paper highlights the representation of Indian road corridors as digital twins in ASAM OpenDRIVE and OpenCRG formats, emphasizing the critical elements required for realistic simulation of vehicle, tire, and ADAS performance. The digital twin incorporates detailed 3D road profiles (X-Y-Z coordinates), capturing the geometry and surface variations of Indian roads. The
Joshi, Omkar PrakashShinde, VikramPawar, Prashant R
This study focuses on the investigation of wheel rim failures near weld zone during repeated cornering induced by interference between the rim and disc during the wheel manufacturing assembly process. Strain gauges were employed to capture real-time stress and strain distributions at critical zones during interference fitting. The experimental results revealed that improper interference levels lead to significant stress concentrations, often surpassing the material's elastic limit, initiating micro-crack formation and promoting fatigue failure. Detailed strain analysis indicated that both radial and axial stresses contribute to long-term structural degradation. The study highlights the critical role of dimensional tolerances, surface finishes, and assembly forces in minimizing stress-induced failures. Recommendations are provided for optimizing design and assembly practices to enhance the durability and reliability of automotive wheels.
P, PraveenDEsigan, LakshmipathyK, ChandramohanC, Santhosh
The high-pressure steering hose in a hydraulic steering system carries pressurized hydraulic fluid from the power steering pump to the steering gear (or steering rack). Its main function is to transmit the force generated by the pump so that the hydraulic pressure assists the driver in turning the wheels more easily. The high-pressure hydraulic pipeline in the power steering system is a vital component for ensuring optimal performance. During warranty analysis, leakage incidents were observed at the customer end within the warranty period. The primary factors contributing to these failures include pipe material thickness, material composition, mechanical properties, and engine-induced vibrations. This study investigates fatigue-related failures through detailed material characterization and Computer-Aided Engineering (CAE) based on real world usage road load data collected. The objective is to identify the root causes by examining the influence of varying pipe thickness on fatigue life
Survade, LalitKoulage, Dasharath BaliramBiswas, Kaushik
The automotive industry is undergoing a significant technological transformation, which is continually impacting the methods used to test the functionalities, delivered to end consumer. This includes the ever-growing need to embed software-based functions to support more and more end user functionality, while at the same time retaining existing and well-established functions, all within short development timelines. This presents both opportunities and challenges, with greater potential for reuse or leverage of test assets, although the actual percentage of leverage on real world projects is practically less than anticipated for a multitude of reasons. This paper collates the various factors which effect the practical leverage of test assets from one project to another, including various workflows and the interaction across components amongst applications lifecycle management systems. Alongside, it describes the current practices of basis analysis in isolation in combination with
Venkata, ParameswaranKulkarni, ApoorvaRAJARAM, SaravananGanesh, Chamarthi
Real-world usage subjects two-wheelers to complex and varying dynamic loads, necessitating early-stage durability validation to ensure robust product development. Conducting a full life-cycle durability testing on proving grounds is time-consuming, extremely difficult for the riders involved, and costly, which is why accelerated testing using rigs such as the road simulator system have become a preferred approach. The use of road simulators necessitates, accurately measured inputs and precise simulation to ensure proper actuation of the rig, thereby enabling realistic representation of road undulations. This paper covers two important aspects essential for achieving an accurate and clear representation of road simulation in a 4-DOF road simulator, encompassing both longitudinal and vertical simulations at the front and rear of the vehicle. The first aspect involves the development of an instrumentation strategy for the two-wheeler, with careful identification of directionally sensitive
Ganju, ShubhamV, VijayamirtharajPrasad, SathishR S, Mahenthran
The application of AI/ML techniques to predict truck endgate bolt loosening represents a major innovation for the automotive industry, aligning with the principles of Industry 4.0. Traditional physical testing methods are both expensive and time-consuming, often identifying issues late in the development process and necessitating costly design changes and prototype builds. By harnessing AI/ML, manufacturers can now analyze endgate slam and bolt preload data to accurately forecast potential bolt loosening issues. This predictive capability not only enhances quality and safety standards but also significantly reduces the costs associated with tooling and builds. The AI/ML tool described in this paper can simulate a variety of load conditions and predict bolt loosening with over 90% accuracy, considering factors such as changes in loads, bolt diameters, washer sizes, and unexpected masses added to the endgate. It provides valuable design insights, such as recommending optimal bolt
Sivakrishna, MasaniDas, MahatSingh, AbhinavKarra, ManasaShienh, GurpreetLuebke, Amy
The structural integrity and fatigue life of engine connecting rods are critical to ensuring reliability and performance in internal combustion (IC) engines. Traditional Finite Element Analysis (FEA) methods for stress and life prediction are computationally expensive, requiring extensive simulation time for varying loading conditions. This study proposes an Advanced AI-driven approach using Graph Neural Networks (GNNs) which is subset of Geometric deep learning (GDL) to predict stress distribution and fatigue life of a connecting rod based on historical simulation data. The methodology involves training on past high-fidelity FEA results, enabling the model to learn spatial stress patterns and fatigue behavior across different design variations and loading conditions. Unlike traditional models, GNNs effectively captures the geometric and topological dependencies inherent in the connecting rod structure, providing robust predictions with minimal computational overhead. Experimental
Pathan, Mohammed ShakilK, KarthikeyanPilla, SashankaS Kangde, Suhas
With the increasing connectivity of modern vehicles, cybersecurity threats have become a critical concern. Intrusion Detection Systems (IDS) play a vital role in securing in-vehicle networks and embedded vehicle computers from malicious attacks. This presentation shares about an IDS framework designed specifically for POSIX-based operating systems used in vehicle computers, leveraging system-level monitoring, anomaly detection, and signature-based methods to identify potential security breaches. The proposed IDS integrates lightweight behavioral analysis to ensure minimal computational overhead while effectively detecting unauthorized access, privilege escalation, communication interface monitoring etc. By employing a combination of rule-based and OS datapoints, the system enhances threat detection accuracy without compromising real-time performance. Practical series deployments demonstrate the effectiveness of this approach in mitigating cyber threats in automotive environments
Shukla, SiddharthChatterjee lng, Avik
The proliferation of connectivity features (V2X, OTA updates, diagnostics) in modern two-wheelers significantly expands the attack surface, demanding robust security measures. However, the anticipated arrival of quantum computers threatens to break widely deployed publickey cryptography (RSA, ECC), rendering current security protocols obsolete. This paper addresses the critical need for quantum-resistant security in the automotive domain, specifically focusing on the unique challenges of two-wheeler embedded systems. This work presents an original analytical and experimental evaluation of implementing selected Post-Quantum Cryptography (PQC) algorithms, primarily focusing on NIST PQC standardization candidates (e.g., lattice-based KEMs/signatures like Kyber/Dilithium), on microcontroller platforms representative of those used in two-wheeler Electronic Control Units (ECUs) - typically ARM Cortex-M series devices characterized by limited computational power, memory (RAM/ROM), and strict
Mishra, Abhigyan
With the increasing complexity and connectivity in modern vehicles, cybersecurity has become an indispensable technology. In the era of Software-Defined Vehicles (SDVs) and Ethernet-based architectures, robust authentication between Electronic Control Units (ECUs) is critical to establish a trust. Further, the cloud connected ECUs must perform authentication with backend servers. These authentication requirements often demand multiple certificates to be provisioned within a vehicle, ensuring secure communication between various combinations of ECUs. As a result, a single ECU may end up storing multiple certificates, each serving a specific purpose. This work proposes a method to limit the number of certificates required in a given ECU without compromising security. We introduce a Cross-Intermediate Certificate Authority (Cross-ICA) Trust Architecture, which enables the use of a single certificate per ECU for inter-ECU communication as well as backend server authentication. In this
Venugopal, VaisakhGoyal, YogendraRaja J, SolomonRai, AjayRath, Sowjanya
There is rapidly increasing advancement in Connectivity, Autonomous, Subscription and Electrification features in vehicles which are being developed. These trends have resulted in an increase in attack surface and security risks on vehicles. To handle these growing risks, it has become important to include passive security systems such as Intrusion detection systems (IDS) which can detect successful or possible attempts of intrusion into vehicle systems compromising their security. In vehicles based on Zonal Architecture, two types of IDS can be implemented, Network based IDS (NIDS) and Host Based IDS (HIDS). The NIDS is implemented in Gateway Electronic Control Unit (ECU) and can monitor multiple networks connected to Gateway, whereas the HIDS usually monitors one single host ECU. Extensive research material is available on NIDS for CAN Networks. For example, the CAN Network in a vehicle is monitored for various abnormal behaviours such as increased busload and invalid signal values
E L, Nanda KumarMutagi, MeghaSonnad, PreetiSharma, Dhiraj