Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
Growing population in Indian cities has led to packed roads. People need a quick option to commute for both personal trips and business needs. The 2-3 Wheel Combination Vehicle is a new, modular solution that switches between a two-wheeler (2W) and a three-wheeler (3W). Hero has designed SURGE S32 to be a sustainable and flexible transportation option. It is world’s first class changing vehicle. The idea is to use a single vehicle for zipping through city traffic, making deliveries, or earning an income. Manufactured to deal with the challenges of modern life, this dual-battery convertible vehicle can easily transform from a two-wheeler to a three-wheeler and vice versa within three minutes. The Surge S32 is a versatile vehicle that replaces the need for multiple specialised vehicles. By lowering the number of vehicles on the road, it decreases road congestion, reduces emissions, and improves livelihoods. It powers by electricity, ensuring sustainability in all aspects. The current
Ali Khan, FerozGupta, Eshan
This paper focuses on the cabin sound quality refinement and the tactile vibration reduction during horn application in the electric vehicle. A loud cracking sound inside the cabin and higher accelerator pedal vibration are perceived while operating the horn. Sound diagnosis is carried out to find out the frequencies causing the cracking noise. Transfer path analysis is conducted to identify the nature of noise and the predominant path through which forces transfer. Based on finding from TPA, various recommendations are evaluated which reduced the noise to a certain extent. Operational Deflection Shape (ODS) is conducted on the horn mounting bracket and on the body to identify the component having higher deflection at the identified frequencies. Recommendations like DPDS improvement on the horn bracket and the body is assessed and the effect of each outcome is discussed. With all the recommendations proposed, the cabin noise levels are reduced by ~ 8 dB (A) and the accelerator pedal
S, Nataraja MoorthyRao, ManchiR, Ashwin sathyaS, THARAKESWARULURaghavendran, Prasath
During vehicle launches in 1st gear, a lateral shake (undulation) and a pronounced metallic hitting noise were observed in the underbody. The noise was identified as the propeller shaft's second universal joint (UJ) yoke striking the fuel tank mounting bracket. Sensitivity to these issues varied with acceleration inputs: light pedal input during a normal 1st gear launch on a flat road resulted in minimal undulation, whereas wide open throttle (WOT) conditions in 1st gear produced significant lateral shake and intensified hitting noise. Further investigation revealed that the problem persists across all gears and occurs consistently during normal driving conditions, with continuous impact between the propeller shaft yoke and the fuel tank mounting bracket. Extensive experimental measurements at the vehicle level indicated that these issues were primarily caused by the center-mounted propeller shaft joint deviating from its central position and rotating eccentrically under torque. This
Sanjay, LS, ManickarajaKumar, SarveshKanagaraj, PothirajSenthil Raja, TB, Prem PrabhakarM, Kiran
The transition to electric vehicles is a significant change as the world moves toward sustainable objectives, and thus the effective usage of energy and batter functioning. However, accurate battery modelling and monitoring is still challenging due to its highly nonlinear behaviour because of its dependencies with temperature variations, aging effects, and variable load conditions. To address these complexities, there are smart battery management systems that monitor the key parameters like voltage, current, temperature, and State of Charge, ensuring safe and efficient battery operation. At the same time, this may not completely capture the battery's dynamic aging behaviour. Here, digital twin emerges as the powerful solution, which replicates the complete physical system into a virtual platform where we can monitor, predict and control. This research paper shows the digital twin solution framework developed for the real-time monitoring and prediction of key battery parameters and
G, AyanaGumma, Muralidhar
Tire noise reduction is important for improving ride comfort, especially in electric vehicle due to lack of engine noise and majority of the noise generated in-cabin is from tire-road interaction. Therefore, the tire tread pattern contribution is one of the important criteria for NVH performance apart from other structurally generated noise and vibration. In this work a GUI-based pitch sequence optimization tool is developed to support tire design engineers in generating acoustically optimized tread sequences. The tool operates in two modes: without constraints, where the pitch sequence is optimized freely to reduce tonal noise levels; and with constraints, where specific design rules are applied to preserve pattern consistency and manufacturability. The key point to be considered in this pitch sequence is that it should be reducing the tonal sound and equally spread i.e., the same pitch cannot be concentrated on one side which may lead to non-uniformity. So, the restriction is that
Sampathraghavan, LakshmiRamarathnam, Krishna KumarMantripragada PhD, Krishna TejaRamachandran, Neeraj
Electric mobility is no longer a distant vision, it is a global imperative in the journey of fight against the climate change and the urban pollution. Yet, despite of explosive growth in the electric vehicle adoptions, a major bottleneck remains which is efficient and convenient charging. The current reliance on physical plug in charging station creates inconvenient, time consuming experience and also faces significant technical and economic challenges those threaten to stall the smooth clean transportation revolution. Without innovation in how we recharge our vehicle the promise of electric mobility appears under threat which is undermined by less efficient, less compatible, and infrastructure hurdles. Wireless charging technology stand out as the game changing breakthrough poised to tackle these all critical problems head on. By enabling the effortless, cable-free charging system across the wide spectrum of electric vehicles, from the personal cars to the public transport fleets and
Jain, GauravPremlal, PPathak, RahulGore, Pandurang
Engine noise mitigation is paramount in powertrain development for enhanced performance and occupant comfort. Identifying NVH problems at the prototype stage leads to costly and time-consuming redesigns and modifications, potentially delaying the product launch. NVH simulations facilitate identification of noise and vibration sources, informing design modifications prior to physical prototyping. Early detection and resolution of NVH problems through simulation can significantly shorten the overall development cycle and multiple physical prototypes and costly redesigns. During NVH simulations, predicting and optimizing valvetrain and timing drive noise necessitates transfer of bearing, valve spring, and contact forces to NVH simulation models. Traditional simulations, involved continuous force data export and NVH model evaluation for each design variant, pose efficiency challenges. In this paper, an approach for preliminary assessment of dB level reductions across design iterations is
Rai, AnkurDeshpande, Ajay MahadeoYadav, Rakesh
The technology in the automotive industry is evolving rapidly in recent times. An electric vehicle is a complex and dynamic system consisting of numerous components interacting with each other. With increase in number of EVs on Indian roads, EV makers to produce innovative and pragmatic concept of electric vehicle features. This electrification in automobile has brought new dimension to Electro Magnetic Compatibility (EMC). Considering all these, EMC Testing of all power train components with real case scenarios is utmost important. This paper will put a light on applicability of various EMC tests for EV components like Traction Battery, Traction Motor and Inverter, DC to DC Converter, 3 in 1 Unit, 4 in Unit, BTMS unit, HVAC system, On Board Charger etc. With ICE vehicles, all components were connected to only 12V battery but with the EV era, Components are getting connected to HV battery or LV battery or sometimes both. With this change, all ISO and CISPR standards were undergone with
Yeola, MayurMulay, Abhijit BSwaminathan, Ganeshan
During parking conditions of vehicles, the state of the battery is uncertain as it goes through the relaxation process. In such scenarios, the battery voltage may exceed the functional safety limits. If we cross the functional safety limits, it is hazardous to the driver as well as the occupant. In this case, relaxed voltage plays a crucial role in identifying the safe state of the battery. To estimate the relaxed cell voltage there are methods such as RC filter time constat modeling and relaxation voltage error method. The problem with these solutions is the waiting time and accuracy to determine the relaxation voltage. In this manuscript, a solution is proposed which ensures the above problem is reduced. To achieve the reduction of relaxation voltage estimation time, a python sparse identification of nonlinear dynamics (PySindy) is used which identifies and fits an equation model based on observing the battery characteristics at different SOC and temperatures. The implementation is
Pandey, PriyanshuNilajkar, AnkurPanda, Abinash
In pursuit of a distinct sporty interior sound character, the present study explores an innovative strategy for designing intake systems in passenger vehicles. While most existing literature primarily emphasizes exhaust system tuning for enhancing vehicle sound quality, the current work shifts the focus toward the intake system’s critical role in shaping the perceived acoustic signature within the vehicle cabin. In this research work, target cascading and settings were derived through a combination of benchmark and structured subjective evaluation study and aligning with literature review. Quantitative targets for intake orifice noise was defined to achieve the desired sporty character inside cabin. Intake orifice targets were engineered based on signature and sound quality parameter required at cabin. Systems were designed by using advanced NVH techniques, Specific identified acoustic orders were enhanced in the intake system to reinforce the required signature in acceleration as well
Sadekar, Umesh AudumbarTitave, UttamPatil, JitendraNaidu, Sudhakara
For regions with cold climate, the range of an electric bus becomes a serious restriction to expanding the use of this type of transport. Increased energy consumption affects not only the autonomous driving range, but also the service life of the batteries, the schedule delays and the load on the charging infrastructure. The aim of the presented research is to experimentally and computationally determine the energy consumption for heating the driver's cabin and passenger compartment of an electric bus during the autumn-winter operation period, as well as to identify and analyze ways to reduce this energy consumption. To determine the air temperature in the passenger compartment, a mathematical model based on heat balance equations was used. This model was validated using data from real-world tests. The research was conducted at a proving ground under two conditions: driving at a constant speed and simulating urban bus operation with stops and door openings. The causes of heat loss in
Kozlov, AndreyTerenchenko, AlexeyStryapunin, Alexander
The rising demand for high-performance 4x4 electric vehicles (EVs) has necessitated development in Noise, vibration and harshness (NVH) optimization, especially in critical components such as compressor bracket. This study focuses on NVH optimization of a dual-stage compressor bracket, comparing its performance against conventional single stage isolation bracket. The dual-stage bracket is evaluated for isolation effectiveness, modal frequency alignment, and overall NVH performance, while ensuring compliance with stiffness targets. Additionally, dual-stage design meets stringent stiffness requirement, confirming structural integrity under dynamic loads. Modal analysis results reveal that the dual-stage configuration effectively shifts critical frequencies away from operational ranges, reducing resonance risks. The results highlight the dual-stage bracket's ability to address NVH challenges in high-performance 4x4 EVs, offering a robust solution for improving cabin comfort and vehicle
Hazra, SandipTangadpalliwar, Sonali
One can witness the constant development and redevelopment of cities throughout the world. Construction equipment vehicles (CEVs) are commonly used on the construction site. However, the noise pollution from construction sites due to the use of CEV has become a major problem for many cities. The construction equipment employed is one of the main causes of these elevated noise levels. The construction workers face a potential risk to their auditory health and well-being due to the noise levels they are exposed to. Different countries have imposed exterior and operator’s ear noise limits for construction equipment vehicles, enabling them to control noise pollution. In this study, three vehicles were selected and checked for NVH performance and found that the operator ear noise level of the identified vehicle is 6 dB(A) higher than the benchmark vehicle level in dynamic conditions, when tested as per ISO 6396. Similarly, there was another vehicle having exterior noise 2 dB(A) higher than
Shinde, GauravJawale, PradeepJain, SachinkumarHarishchandra Walke, Nagesh
In electric vehicle (EV) applications, accurate estimation of State of Health (SOH) of lithium ion battery pack is critical for ensuring its performance, reliability, operational safety and user confidence. SOH is a key parameter monitored by Battery Management System (BMS) to check the remaining usable life of the battery and to make informed decisions regarding charging, discharging, power delivery, and maintenance scheduling. In traditional SOH estimation techniques commonly rely on simplistic full-cycle charge-discharge data or single-parameter tracking (such as voltage or internal resistance) and other method like coulomb counting. Kalman filter, model based method such as equivalent circuit modelling, data driven models etc. This methods not consider variable field conditions such as partial and full state of-charge usage condition, dynamic load profiles, and non-uniform aging. As a result, these methods can produce significant deviations in SOH estimation, potentially causing
Nikam, AshishTiwari, Awanish ShankarSodha, NiravHariyani, GaneshAmbhore, Yogesh Gajanan
When the flow of fluid within a high-pressure line is abruptly halted, pressure pulsations are generated. This phenomenon is known as the water hammer effect. This may lead to significant stress and, in the worst-case scenario, results in various types of failures within the highly pressurized system. Similar issues are observed in diesel high pressure fuel line where pressure is well above 1600 bar. Due to multiple injections on-off events, pressure pulsation gets created inside high pressure fuel lines (HPFL) which leads to problems such as high strain on high pressure fuel lines, mechanical damage, uneven fuel injected quantity, vibration beyond specification limits for rail pressure sensors or in worst case extreme noise. This is due to high pressure pulsation which occurs when fluid/fuel natural frequency resonates with structural HPFL natural frequency. In this work, A comparative FEA analysis is conducted to evaluate strain in two distinct high-pressure fuel lines, with pressure
Bawache, Krushna RameshSethy, Girija Kumari
Surface Permanent Magnet Synchronous Motors (SPMSMs) have gained significant attention in modern industrial, automotive, and aerospace applications due to their high efficiency, power density, and superior dynamic performance. This paper explores the fundamental principles, control strategies, and optimization techniques for SPMSMs. The study focuses on advanced vector control methods, i.e., Field-Oriented Control (FOC), to achieve precise torque and speed regulation. Additionally, to ensure the safety and reliability of EV motors. Active discharge strategies used in EV motor drives focus on circuit topologies, control techniques, and implementation challenges. The paper also discusses a comparison of Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM) techniques, where the maximum speed of the motor is achieved. The findings highlight the potential of SPMSMs in high-performance applications, emphasizing future research directions in energy
Munnur, SwathiGandhi, NikitaTendulkar, SwatiMasand, DeepikaMurty, V. ShirishPeruka, Mahesh
The proliferation of wireless charging technology in electric vehicles (EVs) introduces novel cybersecurity challenges that require comprehensive threat analysis and resilient design strategies. This paper presents a proactive framework for assessing and mitigating cybersecurity risks in wireless charger Electronic Control Units (ECUs), addressing the unique vulnerabilities inherent in electromagnetic power transfer systems. Through systematic threat modeling, vulnerability assessment, and the development of defense-in-depth strategies, this research establishes design principles for creating robust wireless charging ecosystems resistant to cyber threats. The proposed framework integrates hardware security modules, encrypted communication protocols, and adaptive threat detection mechanisms to ensure operational integrity while maintaining charging efficiency. Experimental validation demonstrates the effectiveness of the proposed security measures in preventing unauthorized access, data
Uthaman, SreekumarMulay, Abhijit BGadekar, Pundlik
Electric vehicles (EVs) have surged in popularity in recent years due to their environmental benefits. The influence of range on air conditioning (AC) power consumption is a critical concern for electric vehicle (EV) owners, particularly in warmer climates. Overcoming obstacles such as a limited vehicle range is necessary for the increased use of electric-powered automobiles. Cabin heating and cooling demand for climate control consumes more energy from the main battery and has been revealed to significantly reduce vehicle range. During peak cooling or heating, the overall power consumption of the AC system takes almost 50% of the energy used for traction. The average reduction in driving range caused by air conditioning (heating and cooling) approximates 33%. The energy usage of an electric vehicle can be considerably decreased by switching the climate control setting to economy mode. The AC system will operate more effectively, enabling the vehicle to save energy and extend its range
Mulamalla, Sarveshwar ReddyAnugu, AnilE A, MuhammedUmmiti, KumarM, NisshokChoudhary, Ankit
In recent years, the automotive industry has been looking into alternatives for conventional vehicles to promote a sustainable transportation future having a lesser carbon footprint. Electric Vehicles (EV) are a promising choice as they produce zero tail pipe emissions. However, even with the demand for EVs increasing, the charging infrastructure is still a concern, which leads to range anxiety. This necessitates the judicious use of battery charge and reduce the energy wastage occurring at any point. In EVs, regenerative braking is an additional option which helps in recuperating the battery energy during vehicle deceleration. The amount of energy recuperated mainly depends on the current State of Charge (SoC) of the battery and the battery temperature. Typically, the amount of recuperable energy reduces as the current SoC moves closer to 100%. Once this limit is reached, the excess energy available for recuperation is discharged through the brake resistor/pads. This paper proposes a
Barik, MadhusmitaS, SethuramanAruljothi, Sathishkumar
Over the last few years, notable progress has occurred in electric vehicle (EV) technology. Inverters are key components for electric vehicles (EV). Various PWM strategies have been implemented by OEMs over past years. For most of PWM scheme timing calculation & Lengthy algorithm increases complexity. The proposed a novel Pulse Width Modulation (PWM) control technique for generating inverter lag switching times in multi-level inverters. The proposed Space Vector PWM (SVPWM) method eliminates the need for sector and region identification by utilizing sampled values of reference phase voltages, thereby reducing computational efforts and complexities. The scheme can generate N-level PWM signals and offers flexibility to operate with fewer levels, including operation in the overmodulation range. The sampled magnitudes reference phase voltages are converted into timing signals that are subsequently processed by an algorithm to modify modulating signals. These modulating signals are
Bhanabhagvanwala, Prem Kiritkumar
This paper examines the challenges and opportunities in homologating AI-driven Automated Driving Systems (ADS). As AI introduces dynamic learning and adaptability to vehicles, traditional static homologation frameworks are becoming inadequate. The study analyzes existing methodologies, such as the New Assessment/Test Methodology (NATM), and how various institutions address AI incorporation into ADS certification. Key challenges identified include managing continuous learning, addressing the "black-box" nature of AI models, and ensuring robust data management. The paper proposes a harmonized roadmap for AI in ADS homologation, integrating safety standards like ISO/TR 4804 and ISO 21448 with AI-specific considerations. It emphasizes the need for explainability, robustness, transparency, and enhanced data management in certification processes. The study concludes that a unified, global approach to AI homologation is crucial, balancing innovation with safety while addressing ethical
Lujan Tutusaus, CarlosHidalgo, Justin
India's electric 2-wheeler (E2W) market has witnessed fast growth, driven by lucrative government policies. The two-wheeler segment dominates the Indian automotive market, accounting for the largest share of total sales. Consequently, the manufacturers of 2-wheelers are developing new electric vehicles (EV) tailored for the Indian market. However, the Indian EV market has witnessed multiple fire accidents in recent years, raising safety concerns among consumers and industry stakeholders. These incidents highlight key weakness in battery thermal management systems (BTMS), particularly during charging. Most existing E2W BTMS relies on passive (natural) air cooling, which has been associated with fire incidents due to its inefficiency in heat dissipation, particularly during charging in India's high-temperature environment. Therefore, it is imperative to build thermally viable and economical BTMS for the growing E2W vehicles with fast charging capability. FEV is actively developing the
Raut PhD, AnkitHiremath, Vinodkumar SEmran, AshrafGarg, ShivamBerry, Sushil
In era of Software Defined Vehicle (SDV), the whole ecosystem of automobile will be impacted. So, it is going to through several challenges for testing activities. In electric vehicle, most critical component is traction battery, which is controlled and operated through battery management system (BMS). BMS is an electronic system, where is going to function as per software of BMS. And in SDV, software is a key element, which is continuously keep on updating on regular basis. So, it means some of BMS functionalities, features or performance may be also altered on each time on software update, which may impact battery’s operating condition, if some scenario is not evaluated during earlier testing then there are it may bring battery out of safe operating area, which may significant impact battery safety, performance or cycle-life. In this paper, we are exploring that different testing requirements for EV Batteries, which may be part of testing practices under era of SDV. Here we will
Bhateshvar, Yogesh KrishanMulay, Abhijit B