Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
In the absence of engine noise, road-induced noise has become a major concern specifically for Battery Electric Vehicles (BEVs), impacting Sound Pressure Level (SPL) for both drivers and passengers. Under the influence of random road load inputs, structural vibrations which transfer from road and tire to suspension to vehicle body, the cabin interior noise, particularly at lower frequencies, is significantly affected. To improve the road-induced low-frequency structure-borne noise behaviour, which frequently perceptible as ‘booming noises’, a study was carried out to assess predominant noise sources present in vehicle and to suggest refinements in reducing the noise levels. By considering random excitations of road profile through tire patch using CD-Tire model, vehicle interior noise was computed. Subsequently, to get insight of dynamic behaviour of vehicle, various diagnostic assessments to understand the influence from structure and paths were deployed. Major contributors from body
Paik, SumanRaghuvanshi, JayeshkumarChaudhari, Vishal VasantraoV, Radhika
The evolution of electric vehicles (EVs) also demands the evolution of powertrain mounting systems to achieve superior Noise, Vibration, and Harshness (NVH) performance. This study presents a comparative evaluation of cradle, saddle and ladder mounting systems in EV applications. Examples of experimental modal analysis and vehicle-level vibration tests were performed in order to evaluate structure-borne noise transmission as well as airborne noise transfer under operating conditions. Important parameters like mount stiffness, isolation efficiency and dynamic load distribution were performed. These findings provide valuable guidance for selecting optimal mount strategies to enhance occupant comfort and acoustic quality in future EV designs. Recommendations for mount system improvements considering evolving EV architectures are also discussed. This work provides a crucial, experimentally-validated framework for selecting optimal mounting architectures, addressing a key gap in the
Hazra, Sandipmore, VishwasNaik, Sarang Pramod
The area of electric vehicles (EV) has fully arrived with almost every OEM enhancing electric vehicles in their portfolio. However, regarding its business potential numerous challenging engineering questions have risen. Especially vehicle NVH development needs to be rethought as masking noise from classical internal combustion engines (ICE) are gone. At the same time the frequency content of electric engines falls in the best human audible range, creating high potential for annoying tonal acoustic issues. With NVH design requirements now pushed up into the kilohertz range, many classic development strategies fail or lack efficiency. VIBES Technology’s answer to this challenge is what we call Hybrid Modular Modelling (HMM). This modelling strategy combines test-based and numerical simulation throughout the vehicle development cycle. Using best of both worlds, HMM allows accurate virtual (part / system) design and optimization on full vehicle level. Here HMM is based on the latest
Kohlhofer, DanielPingle, Pawan Sharadde Klerk, Dennis
The article deals with the issue of identifying structural defects that contribute to the formation of a carbide net during thermochemical treatment of steel parts, which negatively affects the mechanical properties complex of finished products. Based on the available data, a theory has been put forward regarding the influence of the present non-metallic inclusions in the carburizing steels structure on carbide formation process in the hardened layer. As an experimentally the samples have been produced from the varying chemical composition alloy structure carburized steel (0.17-0.23 % C, 0.17-0.37 % Si, 0.80-1.10 % Mn, 1.00-1.30 % Cr, 0.03-0.09 % Ti). During microstructure analysis of the samples it has been establish that non-metallic inclusions, in particular sulfides, contribute to the formation of carbides and carbide net in steel due to their high chemical activity with carbon. Thus, contamination of the metal of carburizing steels with non-metallic inclusions is not only a defect
Runova, IuliiaChatkina, MariiaMusienko, Aleksandr
As electric vehicle (EV) adoption accelerates globally, a growing volume of lithium-ion batteries are reaching an end-of-life in their primary automotive application—despite retaining 60 to 80% of their original capacity. This presents a significant opportunity to extend battery utility through second-life applications such as stationary energy storage, microgrid support, and commercial backup systems. This paper analyzes the strategies for maximizing the residual value of second-life EV batteries through repurposing and resale, while also addressing the challenges associated with performance optimization and standardization of testing and certification procedures. The study evaluates the techno-economic viability of second-life batteries compared to new systems, emphasizing cost savings, environmental impact, and emerging market demand. Techniques for enhancing second-life performance are examined, including advanced state-of-health (SOH) diagnostics, machine learning models for usage
Agarwal, PranjalPenta, Amar
The work completed on “System level concepts to test and design integrated EV system involving power conversion to satisfy ISO26262 functional safety requirement” is included in the paper. Integrating power conversion and traction inverter subsystems in EVs is currently popular since it increases dependability and improves efficiency and cost-effectiveness. Maintaining safety standards is at danger due to the growing safety requirements, which also raise manufacturing costs and time. The three primary components of integrated EV systems are the PDU, DC-DC converter, and onboard charger. Every part and piece of software is always changing and needs to be tested and validated in an economical way. Since the failure of any one of these components could lead to a disaster, the article outlines the economical approaches and testing techniques to verify and guarantee that the system meets the functional safety criterion.
Uthaman, SreekumarMulay, Abhijit BGadekar, Pundlik
A crash energy absorption technique and method improve the safety and structural integrity of electric vehicle battery packs during collisions, complying with global regulations. This analysis details an assembly featuring a battery housing for mounting battery cells, a crash member connected to the battery housing's periphery, and flexural members linked to the crash member. The flexural members are designed to absorb impact forces by deforming and storing potential energy during sudden impacts. This approach ensures energy is stored within the flexural elements and then transferred to the battery cells through progressive crushing. The design effectively delays intrusion, enhances battery safety, and minimizes cell-level damage. This solution improves occupant safety and prevents thermal runaway incidents while maintaining the battery's overall performance and reliability in EVs.
Amberkar S, SunilLakshman singh, MeenakumariBodaindala, Anil Kumar
With the rapid adoption of electric vehicles (EVs), ensuring the reliability, safety, and cost-effectiveness of power electronic subsystems such as onboard chargers, DC-DC converters, and vehicle control units (VCUs) has become a critical engineering focus. These components require thorough validation using precise calibration and communication protocols. This paper presents the development and implementation of an optimized software stack for the Universal Measurement and Calibration Protocol (XCP), aimed at real-time validation of VCUs using next-generation communication methods such as CAN, CAN-FD, and Ethernet. The stack facilitates read/write access to the ECU’s internal memory in runtime, enabling efficient diagnostics, calibration, and parameter tuning without hardware modifications. It is designed to be modular, platform-independent, and compatible with microcontrollers across different EV platforms. By utilizing the ASAM-compliant protocol architecture, the proposed system
Uthaman, Sreekumar
Aluminum foils have gained traction with EV battery manufacturers for their pouch cell format. Over the years, it has evolved as a material of choice, but it is still plagued by the issues of stress concentration and swelling due to lower strength and lower stiffness of base aluminum layer. Preliminary investigation revealed that laminates using steel foil material (thickness < 0.1mm) could be a potential candidate for EV pouch cell casing. Thus, steel-based laminate was developed meeting key functional requirements (e.g., barrier performance, insulation resistance, peel strength, electrolyte resistance, formable without cracking at edges, and heat sealing compliant). This innovative patented steel-based laminate [1] was further used to manufacture pouch cell prototypes (up to a maximum capacity of 2.8Ah) for key performance evaluation (e.g., cell cycling and nail penetration). The study paves the way for a low cost, sustainable and flexible yet strong steel-based laminate packaging
Singh, Pundan KumarRaj, AbhishekKumar, AnkitChatterjee, SourabhVerma, Rahul KumarSamantaray, BikashGautam, VikasPandey, Ashwani
This paper presents a comprehensive testing framework and safety evaluation for Vehicle-to-Vehicle (V2V) charging systems, incorporating advanced theoretical modeling and experimental validation of a modern, integrated 3-in-1 combo unit (PDU, DCDC, OBC). The proliferation of electric vehicles has necessitated the development of resilient and flexible charging solutions, with V2V technology emerging as a critical decentralized infrastructure component. This study establishes a rigorous mathematical framework for power flow analysis, develops novel safety protocols based on IEC 61508 and ISO 26262 functional safety standards, and presents comprehensive experimental validation across 47 test scenarios. The framework encompasses five primary test categories: functional performance validation, power conversion efficiency optimization, electromagnetic compatibility (EMC) assessment, thermal management evaluation, and comprehensive fault-injection testing including Byzantine fault scenarios
Uthaman, SreekumarMulay, Abhijit B
Conventional ICE (internal Combustion Engine) tractors have single mechanical drivetrain used for propulsion of wheels, hydraulic and PTO drive and are designed to deliver power across range of operational zones leading to power wastage, reducing efficiency. This happens during Low Power Mode or low load operation. Extensive validation in Mahindra tractors reveal that such operations contribute to overall loss of 18–20%. Out of all factors, losses due to hydraulics is predominant and is close to 7–10 % of total power loss. In contrast, Hybrid tractors with Engine for propulsion of wheels alone and a dedicated Electric motor for PTO, Hydraulic functions. We have designed the system to offer enhanced operational flexibility through three distinct modes: Low Power Mode, Lift Assist Mode, and Implement Drive Mode. These modes ensure delivery of optimised performance while reducing the hydraulic losses & increased efficiency of the overall system. Low Power mode - powers essential vehicle
Natarajan, SaravananP, ShanmugavelJoshi, PriyankaSundaram, PavithraSameer, KamatSingh, RubyArvind, KumaranT, Senthil Kumar
Transportation sector in India accounts for 12% of total energy consumption. Demand of energy consumption is being met by the imported crude oil, which makes transportation sector more vulnerable to fluctuating international crude oil prices. India is mindful of its commitment in 2016 Paris climate agreement to reduce GHG emissions intensity of its GDP by 40% by 2030 as compared to 2005 levels. To fast track the decarbonization of transportation sector, commercial vehicle manufacturers have been exploring other viable options such as battery electric vehicles (BEVs) as a part of their fleet. As on today, BEV has its own challenges such as range anxiety & high total cost of ownership. Range anxiety can be certainly addressed by optimum sizing of electric powertrain, reduction in specific energy consumption (SEC) & use of effective regeneration strategies. Higher SEC can be more effectively addressed by doing vehicle energy audit thereby estimating the energy losses occurring at each
Gijare, SumantKarthick, K.Juttu, SimhachalamThipse, Sukrut S.A, JothikumarJ, Frederick RoystonSR, SubasreeG, HariniM, Senthil Kumar
As light electric vehicles (LEVs) gain popularity, the development of efficient and compact on-board chargers (OBCs) has become a critical area of focus in power electronics. Conventional AC-DC topologies often face challenges, including high inrush currents during startup, which can stress components and affect system reliability. Furthermore, DC-DC converters often have a limited soft-switching range under light load conditions, leading to increased switching losses and reduced efficiency. This paper proposes a novel 6.6 kW on-board charger architecture comprising a bridgeless totem-pole power factor correction (PFC) stage and an isolated LLC resonant DC-DC converter. The main contribution lies in the specific focus on enhancing startup behavior and switching performance. In PFC converters, limiting inrush current during startup is crucial, especially with fast-switching wide-bandgap devices like SiC or GaN. Conventional soft-start techniques fall short in of ensuring smooth voltage
Patil, AmrutaBagade, Aniket
In-vehicle communication among different vehicle electronic controller units (ECU) to run several applications (I.e. to propel the vehicle or In-vehicle Infotainment), CAN (Controller Area Network) is most frequently used. Given the proprietary nature and lack of standardization in CAN configurations, which are often not disclosed by manufacturers, the process of CAN reverse engineering becomes highly complex and cumbersome. Additionally, the scarcity of publicly accessible data on electric vehicles, coupled with the rapid technological advancements in this domain, has resulted in the absence of a standardized and automated methodology for reverse engineering the CAN. This process is further complicated by the diverse CAN configurations implemented by various Original Equipment Manufacturers (OEMs). This paper presents a manual approach to reverse engineer the series CAN configuration of an electric vehicle, considering no vehicle information is available to testing engineers. To
Kumar, RohitSahu, HemantPenta, AmarBhatt, Purvish
Addressing the critical need for lightweight and safe energy storage solutions in electric vehicles, this paper presents the design and optimization of a novel Composite Metal Hybrid (CMH) battery pack structure. A computer aided simulation using Abaqus software was performed to optimize the weight of battery pack. The structural integrity and crashworthiness of the optimized lightweight design were rigorously evaluated under various load cases like side impact (crush), shock loading and underfloor impact. Modal analysis and load tests addressed, demonstrate the CMH battery pack as a viable and promising lightweight solution for electric vehicle applications. Manufacturing aspects are also discussed to ensure feasibility and integration.
Shah, Bijay KumarSingh, Pundan KumarG., Manikandan
This manuscript introduces a methodology to reduce the DC link capacitor size in pole-phase modulated (PPM) induction motor drives (IMD). Typically, the DC link capacitor (DCLC) occupies around 25 to 30% of the inverter volume and 20% of the inverter material cost. Reducing the DCLC size and cost is essential to lowering the inverter size and cost. This can be accomplished by lowering the DCLC ripple current. The proposed technique suggests adapting phase-shifted triangular carrier waveforms, in all the operating modes of the PPM drive, to significantly reduce the ripple current through DCLC, successively reduces the size and cost of DCLC. Simulations are performed in MATLAB/Simulink on a 9 phase PPM drive to validate the efficacy of the strategy. Though the suggested concept is verified with a 9 phase PPM drive, which is operated in 2 modes, it can be extended to any 3n PPM drive. The results demonstrate a 60% reduction in ripple magnitude, enabling the use of smaller, more reliable
A, Rajeshwari
The transportation and mobility sector are undergoing a profound transformation, with a growing emphasis on sustainability and minimizing the environmental impact of transportation. Among the most significant trends is the transition to electric vehicles (EVs) in the form of Battery and Fuel cell, which produce zero emissions without any harmful gases release in nature. This review highlights several infrastructure-related issues and critical factors that could drive India's transportation sector toward adopting electric vehicles. It also delves into the fundamental understanding of e-mobility, shedding light on the daily challenges and barriers it faces. Furthermore, the study explores research aspects, including the strategies, methods, and tools used for electric vehicles to complete the research on Battery electric vehicles (BEV) and also comparative analysis with Fuel cell vehicles (FCVs). The shift BEVs has been driven by decreasing battery costs and advancements in charging
Kumar, Dr. Vijay Bhooshan
The advancement of electric vehicle (EV) transmission systems is currently a prominent trend aimed at decreasing carbon emissions and providing eco-friendly transportation alternatives. Most of the EV transmissions are single speed, but research conducted on multi speed EV transmissions show higher efficiency, good performance, high speed and torque demand when compared with single speed counterparts. Most of the multi speed EV transmissions that are developed are of non-synchromesh type, which have direct effect on NVH, driving dynamics and durability of drivetrain components. Due to aforementioned factors, gearshift analysis becomes critical for development. Simulation model is developed at early development phase for initial feedback. Using the feedback, drivetrain can be optimized furthermore and test on physical parts can be conducted for final verification. This paper provides a simulation based approach for modelling non-synchromesh two speed EV transmission using Simulation X
Kansagara, SmitThambala, PrashanthSutar, SureshTodtermuschke, KarstenPatel, Hiral
In the development of high-voltage (HV) batteries, ensuring secure connections between HV conductors and maintaining the safety and performance of the battery pack is paramount. Therefore, In the pursuit of enhancing efficiency and reliability in electrical connections, this paper explores the innovative alternate for a traditional screwing method with a friction locking mechanism for connecting busbars. The novel design reimagines the busbar as a Friction clamp (Female part) that securely holds the male part of the Busbar, significantly increasing the contact surface area up to 50%. This enhanced surface area not only improves electrical conductivity but also addresses heat generation issues associated with traditional screw-based connection. By eliminating the need for screws, the new design streamlines the assembly process, resulting in reduced cycle times and improved overall assembly line efficiency. This study presents the design methodology, performance analysis, and potential
Venkatesh, MuraliRaghu, ArunBhramanna, Amol
The light and light signaling devices installation test as per as per IS/ ISO 12509:2004 & IS/ISO 12509:2023 for Earth Moving Machinery / Construction Equipment Vehicles is a mandatory test to ensure the safety and comfort of both road users and operators. Considering the shape and size of construction equipment vehicles, accurate measurement of lighting installation requirements is crucial for ensuring safety and regulatory compliance. The international standard IS/ISO 12509:2004 & IS/ISO 12509:2023 outlines specific criteria for these installation requirements of lighting components, including the precise measurement of various dimensions to ensure optimal visibility and safety. Among these dimensional requirements, the dimension 'E' i.e., the “distance between the outer edges of the machine and the illuminating surface of the lighting device” plays a critical role in the performance of vehicle lighting systems. Traditional methods of measuring this dimension, such as using a
Ghodke, Dhananjay SunilBelavadi Venkataramaiah, ShamsundaraTambolkar, Sonali Ameya
Hydrogen Fuel Cell Electric Vehicles (FCEVs) are emerging as a sustainable solution to reduce greenhouse gas emissions in the transportation sector, in line with the Paris Agreement and global net-zero emission goals. This paper presents a comprehensive performance analysis of the FCEV powertrain under intercity and intra-city driving conditions. The study focuses on key parameters such as fuel cell system efficiency, energy consumption, hydrogen usage, and overall drivetrain response. Using simulation models validated with real-world driving data, the performance of the powertrain is evaluated across varying speed profiles, vehicle loads, and driving cycles. The analysis also considers the impact of auxiliary load including HVAC systems and consumption of other electric components on the powertrain efficiency and energy balance. Results highlight that the FCEV powertrain performs efficiently during intercity driving due to stable speed conditions and low stop-start frequency, while
Patil, Nikhil N.Bhardwaj, RohitSaurabh, SaurabhAhmed, YasirGawhade, RavikantAmancharla, Naga ChaithanyaGadve, Dhananjay
Higher latent heat of vaporization of ethanol deteriorates low ambient temperature starting of engines with ethanol blended fuels. In case of flex fuel vehicles, cold starting becomes very critical on account of higher ethanol content. This case study highlights how pivot table based analytics were effectively employed to enhance engine start strategy during the development of small commercial vehicle running on E20 and E85 fuel blends. The approach showcases how structured data interpretation can significantly support development work in Flex Fuel calibration. The analysis is focused on various critical engine start events such as first crank success, failure to start, battery voltage behavior, and post-start stability across a range of coolant temperatures, particularly below 20°C. Real world test data was categorized using data analysis based on parameters such as crank RPM, battery voltage during cranking, fuel, phase detection status, throttle input, and spark advance, and start
Undre, ShrikantKulkarni, DeepakThonge, RavindraUpadhyay, RajdipKanchan, Shubham
Emission Regulations for NRMM in India have evolved significantly over past two decades. India has progressively adopted stricter standards to align with best practices carried out globally for curbing air pollution. The latest regulations have introduced stringent caps on nitrogen oxides (NOx), and other emission pollutants, ensuring compliance with environmental sustainability goals. Future legislative frameworks are expected to impose even more rigorous emission limits, while incorporating real-world emission monitoring. This will require powertrain manufacturers to integrate advanced after-treatment systems and adopt cleaner combustion technologies to meet compliance standards. To validate compliance with these stringent limits, rigorous testing methodologies are employed. Portable Emission Measurement Systems (PEMS) have become a crucial tool for real-world emission assessment. PEMS technology allows for on-road and field testing of NRMM under actual operating conditions
Rastogi, AadharGarg, VarunRagot, Nicolas