Your Destination for Mobility Engineering Resources
Recently Published
Browse AllThis SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered. The integration of NBC
This SAE Aerospace Recommended Practice (ARP) defines recommended analysis and test procedures for qualification of pneumatically, electrically, manually, and hydraulically actuated air valves. They may be further defined as valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff). Qualification testing performed on the airplane to verify compatibility of the valve function and stability as part of a complete system is outside the scope of this document. Refer to ARP1270 for design and certification requirements for cabin pressurization control system components. As this document is only a guide, it does not supersede or relieve any requirements contained in detailed Customer specifications.
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
Bogie frame is a main skeleton and structural member in railway system which is carrying all the loads such as Suspensions, Axles, wheels, car body, Motor, Gear box etc. The frame is subjected an exceptional and service stresses in Vertical, Longitudinal, Lateral and twist directions throughout the service life which should be withstand for a life span of 30 years without failure. The purpose of this project is to determine the Structural integrity of the Metro rail bogie frame in consideration with EN13749 standard. This paper is the outcome of bench testing of metro rail bogie frame with the application of multiaxial loading in static and dynamic campaign through which stress data is collected with strain gauge sensors and correlated with the FEA results at initial design phase. This helps to verify and evaluate the design and validate the quality of metro rail frame as per the requirement specified in EN13749:2021 European standard in early design stages.
The distribution of mobility equipped with electrified power units is advancing towards carbon-neutral society. The electrified power units require an integration of numerous hardware components and large-scale software to optimize high-performance system. Additionally, a value-enhancement cycle of mobility needs to be accelerated more than ever. The challenge is to achieve high-quality performance and high-efficient development using Model-Based Development (MBD). The development process based on V-model has been applied to electrified power units in passenger vehicle. Traditionally, MBD has been primarily utilized in the left bank (performance design phase) of the V-model for power unit development. MBD in performance design phase has been widely implemented in research and development because it refines prototype performance and reduces the number of prototypes. However, applying the MBD to an entire power unit development process from performance design phase to performance
Gear noise is a common challenge that all gear manufacturers must contend with. In tractors, while it is often sufficiently low in intensity to not pose a significant issue, there are instances where gear whine may occur which is noticeable. In such cases, identifying the source and effectively addressing the problem can prove to be particularly difficult. This paper addresses the root cause analysis carried out for the evaluation of factors influencing whine noise behavior of Spiral bevel gear pair (SO2) in a tractor transmission system. Numerous publications have been published on gear noise of spiral bevel gear pair, too many to list here. However, once the gearbox assembled into the transmission, such models are of limited practical value. The work explained in this paper is a typical example offers avenues in correcting the issue using more limited means.
The US trucking industry heavily relies on the diesel powertrain, and the transition towards zero-emission vehicles, such as battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV), is happening at a slow pace. This makes it difficult for truck manufacturers to meet the Phase 3 Greenhouse Gas standards, which mandate substantial emissions reductions across commercial vehicle classes beginning of 2027. This challenging situation compels manufacturers to further optimize the powertrain to meet stringent emissions requirements, which might not account for customer application specifics may not translate to a better total cost of ownership (TCO) for the customer. This study uses a simulation-based approach to connect customer applications and regulatory categories across various sectors. The goal is to develop a methodology that helps identify the overlap between optimizing for customer applications vs optimizing to meet regulations. To use a data-driven approach, a real
Accidents during lane changes are increasingly becoming a problem due to various human based and environment-based factors. Reckless driving, fatigue, bad weather are just some of these factors. This research introduces an innovative algorithm for estimating crash risk during lane changes, including the Extended Lane Change Risk Index (ELCRI). Unlike existing studies and algorithms that mainly address rear-end collisions, this algorithm incorporates exposure time risk and anticipated crash severity risk using fault tree analysis (FTA). The risks are merged to find the ELCRI and used in real time applications for lane change assist to predict if lane change is safe or not. The algorithm defines zones of interest within the current and target lanes, monitored by sensors attached to the vehicle. These sensors dynamically detect relevant objects based on their trajectories, continuously and dynamically calculating the ELCRI to assess collision risk during lane changes. Additionally
In today's dynamic driving environments, reliable rear wiping functionality is essential for maintaining safe rearward visibility. This study sharing the next-generation rear wiper motor assembly that seamlessly integrates the washer nozzle, delivering improved performance alongside key benefits such as better Buzz, Squeak, and Rattle (BSR) characteristics, reduced system complexity, cost savings, and enhanced perceived quality. This integrated design simplifies the hose routing which improves the compactness and the efficiency of the design. This also enhances the spray coverage and minimizes the dry wiping unlike the traditional systems that position the washer nozzle separately. A non-return valve (NRV) is incorporated to eliminate spray delays ass it maintains consistent water flow giving cleaning effectiveness. Since this makes the nonfunctional parts completely leak proof due to the advanced sealing, it increases the durability and reliability in long run. As this proposal offers
In-vehicle communication among different vehicle electronic controller units (ECU) to run several applications (I.e. to propel the vehicle or In-vehicle Infotainment), CAN (Controller Area Network) is most frequently used. Given the proprietary nature and lack of standardization in CAN configurations, which are often not disclosed by manufacturers, the process of CAN reverse engineering becomes highly complex and cumbersome. Additionally, the scarcity of publicly accessible data on electric vehicles, coupled with the rapid technological advancements in this domain, has resulted in the absence of a standardized and automated methodology for reverse engineering the CAN. This process is further complicated by the diverse CAN configurations implemented by various Original Equipment Manufacturers (OEMs). This paper presents a manual approach to reverse engineer the series CAN configuration of an electric vehicle, considering no vehicle information is available to testing engineers. To














