Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 711

Recently Published

Browse All
This specification covers a titanium alloy in the form of sheet, strip, and plate up to 4.000 inches (101.60 mm), inclusive (see 8.6).
AMS G Titanium and Refractory Metals Committee
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for automotive units with the primary drive hypoid gears, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. The information contained within is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI). A complete listing of qualification submission requirements and
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate 0.015 to 1.5 inches (0.38 to 38 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
The acquisition of sensor data is essential for the operation and validation of the SAE vehicle. This system must be capable of converting analog data into digital form and communicating with the sensors. To this end, printed circuit boards (PCBs) were designed and manufactured, incorporating electromagnetic interference mitigation solutions through various analog filters, in order to ensure the integrity of the acquired signals. Data conversion and communication were implemented using a microprocessor from the STM32 family, with efficient transmission of the processed data carried out via the CAN protocol.
David, Mateus PadilhaAndrade, Fernanda Matsumoto LimaSousa Oliveira, IvanCarvalho, Luis Pedro FeioGuerreiro, Joel FilipeRibeiro, Rodrigo EustaquioSantos Neto, Pedro José
In the context of emerging technology developed for advanced air mobility concept, its maintenance protocols are not yet mature and existing aviation maintenance systems may not support electric-vertical take-off and landing (e-VTOL) needs. Thus, the operation of e-VTOL aircraft during its deployment stage necessitates the need for qualitative maintenance support. The main purpose of this study is to develop the basic structural principles of the projected new maintenance, repair, and overhaul (MRO) organization for e-VTOL air vehicles, which will support airworthiness through comprehensive maintenance approaches. Thus, the operation of e-VTOL aircraft during its deployment stage necessitates the need for qualitative maintenance support. The importance of the study is to offer standard procedures based on management and maintenance strategies, application of predictive and prescriptive maintenance tools, which pose a significant contribution to ensuring safety, reliability, and cost
Imanov, TapdigBozdereli, Arzu
X42eq
Assis, GuilhermeSánchez, Fernando ZegarraPradelle, Renata Nohra ChaarBraga, Sergio LealTicona, Epifanio MamaniSouza Junior, JorgePradelle, Florian
Nanosilica-treated fabrics have a variety of properties, such as durability, water resistance, and specific surface characteristics. Due to that, many applications of those components are highlighted in literature. Some examples include waterproofing and water repellency, stain resistance, flame retardancy, improved durability, UV protection, improved comfort, antimicrobial properties, and textile coatings for electronics. These applications demonstrate how nanosilica-based treatments can enhance the performance of fabrics, making them more suitable for various specialized uses. In this work, a technical fabric with a mesh opening of 45 μm and an open area of 29.6% was surface treated. The treatments were performed by the dip-coating method using poly(dimethylsiloxane) (PDMS) and nanosilica at different concentrations. Optical microscopy (OM) images of the fabrics’ surface and water contact angle (WCA) measurements were carried out before and after the fabrics’ treatments. The results
Kerche, Eduardo FischerLeal, DéboraRomano, PauloOliveira, ViníciusPolkowski, Rodrigo
22xx
Pasa, Bruno RobertoSilveira, Juliano PereiraFagundez, Jean Lucca SouzaLanzanova, Thompson Diórdinis MetzkaMartins, Mario Eduardo SantosSalau, Nina Paula Gonçalves
This study presents three methods for obtaining the latency of an indirect injection Electro-Injector as a function of the applied voltage. This parameter is relevant for the linearization of the injected mass in order to model fuel mass delivery on modern ECUs. For this purpose, the authors built a test bench, with the intent of running analysis on the results of tests of mass differential between injections, circulating current, and mechanical vibration. The authors gathered data over the iterative experiments and correlated the mass differential, vibration data and current measurements. The authors observed that with a reduction of supply voltage at the injector’s pins, a greater injector dead time made itself present displaying a need for a compensation of opening time in function of voltage since the injector’s needle takes a longer amount of time in partially open positions. Modern ECU manufacturers broadly use the data obtained by this type of iterative experiment to accurately
Juliatti, Rafael MotterOliveira, Julia Mathias deMorais Hanriot, Sérgio deSilveira, Hairton Júnior Jose daMoreira, Vinicius Guerra
There is a growing demand for new materials that meet mechanical and structural performance requirements, with specific properties, especially in the automotive industry. From a context of innovation and global needs to be met, there is the appreciation of composite materials, specifically applied in the automotive sector, since these can be obtained from the combination of two or more different materials, obtaining certain properties from the individual characteristics of its phases, expanding the availability of materials to be used in this sector. In recent years the use of natural fibers in composite materials for automotive applications has gained relevance due to factors such as sustainability, low weight and good mechanical properties. The attempt to combine innovation and environmental preservation make such applications promising, aiming to obtain ecological solutions, considering that natural fibers of vegetable origin such as sisal, jute and flax are biodegradable and
Dias, Roberto Yuri CostaSantos Borges, Larissa dosBrandao, Leonardo William MacedoMendonca Maia, Pedro Victor deSilva de Mendonça, Alian Gomes daFujiyama, Roberto Tetsuo
Powertrain architecture is being reshaped by the electrification of heavy-duty military vehicles using hydrogen fuel cell technology, particularly in transmission systems. Unlike conventional internal combustion engines, hydrogen fuel cell electric vehicles (FCEVs) typically use single-speed or direct-drive configurations due to the high torque of electric motors. This paper examines the impact of hydrogen electrification on military vehicle transmissions, focusing on armored multi-role models such as the VBMT-LSR, Guarani, and Leopard 1A5 of the Brazilian Army. The study compares traditional gearboxes with alternative solutions optimized for fuel cells, analyzing the trade-offs in efficiency, durability, and operational adaptability. Additionally, it explores adaptations required for hydrogen internal combustion engines (H2-ICEs), considering their distinct characteristics and demands. The study employs a three-step validation methodology combining computational simulations, technical
Biêng, Ethan Lê QuangPontes, Guilherme AyrosoConrado, Guilherme Barreto RollembergLopes, Elias Dias RossiRodrigues, Gustavo Simão
22
Assis, Marcelo Suman SilvaPaula Araújo, Gabriel Heleno deBaeta, José Guilherme CoelhoAbreu, Pedro Blaso Barbosa deFilho, Fernando Antonio Rodrigues
This study presents a methodology for characterizing the spray of an internal combustion engine (ICE) fuel injector, focusing on direct injection (DI) systems. It addresses the knowledge gap in academic research regarding injector spray patterns by conducting experimental tests and numerical simulations. Using a Bosch HDEV 1.1 pressure swirl injector and EXXSOL D60 test fluid, spray characteristics were captured with a high-speed camera under varying injection pressures and ambient/counterpressure conditions. These experimental data were used to calibrate a numerical model for simulating spray dynamics within the combustion chamber. The research examines the impact of parameters such as breakup length and breakup size constant on spray behavior, revealing that the breakup size constant significantly affects spray penetration. The study successfully developed and validated a methodology for characterizing and modeling fuel injector sprays, providing a valuable reference for optimizing
Paula Araújo, Gabriel HelenoAssis, Marcelo Suman SilvaMalaquias, Augusto Cesar TeixeiraCarvalho Torres Filho, MarcosBaeta, José Guilherme Coelho
In vehicle development, occupant-centered design is crucial to ensuring customer satisfaction. Key factors such as visibility, access, interior roominess, driver ergonomics, interior storage and trunk space directly impact the daily experience of vehicle occupants. While automakers rely on engineering metrics to guide architectural decisions, however in some cases doesn’t exist a clear correlation between these quantitative parameters and the subjective satisfaction of end users. This study develops a methodology which addresses that gap by proposing the creation of quantitative satisfaction curves for critical engineering metrics, providing a robust tool to support decision-making during the early stages of vehicle design. Through a combination of clinics, research, and statistical analysis, this project outlines a step-by-step process for developing (dis)satisfaction curves, offering a clearer understanding of how dimensions like headroom, glove box volume, and A-pillar obscuration
Santos, Alex CardosoSilva, GustavoBenevente, RodrigoPadua Silva, AntonioLourenço, Sergio RicardoAndrade, Cecilia NavasSobral, Piero
Tires are fundamental components of Formula SAE race cars, serving as the only point of contact between the vehicle and the track. Their performance directly influences critical aspects such as handling, stability, cornering behavior and lap times, making tire selection a vital factor in vehicle dynamics. However, choosing the optimal tire is a complex challenge due to the wide range of available options and the need to balance multiple performance parameters. While many studies analyze tire behavior, few focus specifically on the demands of Formula SAE vehicles. Those that do often rely on overly complex methodologies or subjective assumptions, resulting in a lack of practical and systematic approaches to decision-making. This study addresses this gap by developing a structured approach for tire selection, designed to meet the specific needs of Formula SAE teams. The proposed approach analyzes a typical Formula SAE endurance track, acceleration, skid pad, and autocross circuit to
Rocha Checheliski, Carolina Dias daMartins, Mario Eduardo SantosHausen, Roberto Begnis
The advancement of electric mobility has driven the development of technologies aimed at enabling smart, secure, and interoperable electric vehicle (EV) charging. In this context, this paper presents a technical and market analysis of the Vehicle-to-Grid (V2G) and Plug & Charge (PnC) functionalities, focusing on their architectures, applicable technical standards, communication protocols, levels of commercial maturity, and emerging applications. The discussion begins with a review of the main national and international standards relevant to charging infrastructure, with emphasis on IEC 61851, IEC 62196, and ISO 15118 series, which address the technical requirements of equipment, connectors, and vehicle-to-grid communication. The operation of V2G is then discussed as a technology that enables bidirectional energy flow between the EV and the power grid, with a focus on topological configurations, pilot project applications, and regulatory and economic challenges that currently limit its
Marques, Felipe L. R.Arioli, Vitor T.Bernardo, RodrigoNakandakare, Cleber A.Pizzini, Luiz R.Nicola, Eduardo V.
2
Siqueira, Caio Henrique MoreiraÁzara, Luiz Eduardo MartinsRibeiro, José Vitor PuttiniSoares, Gabriel FariaSilva, Fábio MoreiraAlvarez, Carlos Eduardo Castilla