Your Destination for Mobility Engineering Resources
Recently Published
Browse AllThis SAE Aerospace Recommended Practice (ARP) defines recommended analysis and test procedures for qualification of pneumatically, electrically, manually, and hydraulically actuated air valves. They may be further defined as valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff). Qualification testing performed on the airplane to verify compatibility of the valve function and stability as part of a complete system is outside the scope of this document. Refer to ARP1270 for design and certification requirements for cabin pressurization control system components. As this document is only a guide, it does not supersede or relieve any requirements contained in detailed Customer specifications.
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered. The integration of NBC
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
The high-pressure steering hose in a hydraulic steering system carries pressurized hydraulic fluid from the power steering pump to the steering gear (or steering rack). Its main function is to transmit the force generated by the pump so that the hydraulic pressure assists the driver in turning the wheels more easily. The high-pressure hydraulic pipeline in the power steering system is a vital component for ensuring optimal performance. During warranty analysis, leakage incidents were observed at the customer end within the warranty period. The primary factors contributing to these failures include pipe material thickness, material composition, mechanical properties, and engine-induced vibrations. This study investigates fatigue-related failures through detailed material characterization and Computer-Aided Engineering (CAE) based on real world usage road load data collected. The objective is to identify the root causes by examining the influence of varying pipe thickness on fatigue life
With the rapid advancement of connected vehicle technologies, infotainment Electronic Control Units (ECUs) have become central to user interaction and connectivity within modern vehicles. However, this enhanced functionality has introduced new vulnerabilities to cyberattacks. This paper explores the application of Artificial Intelligence (AI) in enhancing the cybersecurity framework of infotainment ECUs. The study introduces AI-powered modules for threat detection and response, presents an integrated architecture, and validates performance through simulation using MATLAB, CANoe, and NS-3. This approach addresses real-time intrusion detection, anomaly analysis, and voice command security. Key benefits include zero-day exploit resistance, scalability, and continuous protection via OTA updates. The paper references real-world automotive cyberattack cases such as OTA vulnerability patches, Connected Drive exploits, and Uconnect hack, emphasizing the critical need for AI-enabled proactive
This study investigates the phenomenon of receptacle icing during Compressed Natural Gas (CNG) refueling at filling stations, attributing the issue to excessive moisture content in the gas. The research examines the underlying causes, including the Joule-Thomson effect, filter geometries, and their collective impact on flow interruptions. A comprehensive test methodology is proposed to simulate real-world conditions, evaluating various filter types, seal materials and moisture levels to understand their influence on icing and flow cessation. The findings aim to offer ideas for reducing icing problems. This will improve the reliability and safety of CNG refueling systems.














