Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
Growing population in Indian cities has led to packed roads. People need a quick option to commute for both personal trips and business needs. The 2-3 Wheel Combination Vehicle is a new, modular solution that switches between a two-wheeler (2W) and a three-wheeler (3W). Hero has designed SURGE S32 to be a sustainable and flexible transportation option. It is world’s first class changing vehicle. The idea is to use a single vehicle for zipping through city traffic, making deliveries, or earning an income. Manufactured to deal with the challenges of modern life, this dual-battery convertible vehicle can easily transform from a two-wheeler to a three-wheeler and vice versa within three minutes. The Surge S32 is a versatile vehicle that replaces the need for multiple specialised vehicles. By lowering the number of vehicles on the road, it decreases road congestion, reduces emissions, and improves livelihoods. It powers by electricity, ensuring sustainability in all aspects. The current
Ali Khan, FerozGupta, Eshan
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
Gupta, IshanBhatnagar, AbhinavKumar, Ayush
Nowadays, digital instrument clusters and modern infotainment systems are crucial parts of cars that improve the user experience and offer vital information. It is essential to guarantee the quality and dependability of these systems, particularly in light of safety regulations such as ISO 26262. Nevertheless, current testing approaches frequently depend on manual labor, which is laborious, prone to mistakes, and challenging to scale, particularly in agile development settings. This study presents a two-phase framework that uses machine learning (ML), computer vision (CV), and image processing techniques to automate the testing of infotainment and digital cluster systems. The NVIDIA Jetson Orin Nano Developer Kit and high-resolution cameras are used in Phase 1's open loop testing setup to record visual data from infotainment and instrument cluster displays. Without requiring input from the system being tested, this phase concentrates on both static and dynamic user interface analysis
Lad, Rakesh PramodMehrotra, SoumyaMishra, Arvind
Sustainability and environmentally friendly business practices are becoming essential. Tyre industries are embracing the green initiatives to reduce its impact on the environment by exploring the eco-friendly strategies. Starting from the ethical raw material sourcing to a creative recycling technique, strategies are widely distributing in every step of tyre manufacturing to disposition. Each stage of a tyre’s life cycle viz. raw material procurement, manufacturing, transportation both upstream and downstream as well as during the end-of-life phases have an emission-saving potential. It is important to reduce emissions at every stage of tyre’s lifecycle. We have recently developed a Sustainable Tyre with 11% less GHG emission through sustainable raw material approach. Bio sourced or bio attributed raw materials like Styrene Butadiene Rubber (SBR), Polybutadiene Rubber (PBR), Rubber process oil (RPO) and Silica along with natural rubber (NR) had been used. Beside the raw materials from
Bhandary, TirthankarSingha Roy, SumitPaliwal, MukeshDasgupta, SaikatChattopadhyay, DipankarDas, MahuyaMukhopadhyay, Rabindra
There is a scarcity of research in literature regarding the determination of Plenum Opening Area of cowl box. The area of the plenum opening in the cowl box significantly affects the airflow rate in fresh airflow modes, such as face and defrost modes, as well as issues related to water ingress. Primarily, the size of the plenum opening is determined by the necessary HVAC airflow rate. This study aims to investigate how the plenum opening area impacts both airflow discharge and the water ingress issue in the HVAC module. A novel approach is introduced in this research to determine the optimal plenum opening area of the cowl box, taking into account both airflow rate and water ingress concerns. The ANSYS FLUENT software is utilized to analyze airflow discharge in both face and defrost modes, while the SPH (Smooth Particle Hydrodynamics) based Preonlab tool is employed for water ingress analysis. Airflow discharge is evaluated for various plenum opening sizes in both modes, and the area
Baskar, SubramaniyanMahesh, AGopinathan, Nagarajan
There is an increasing trend of using polymeric materials in the vehicle interior compartment. While the polymers provide benefits in terms of flexibility in profiling, lighter weight and aesthetics but one of the challenges with the polymers is emission of volatile organic compounds (VOCs) during their usage and particularly at a temperature prevailing in the vehicle cabin. VOCs adversely impact the vehicle interior air quality and can pose a risk to occupants’ health. However, there is a lack of information on volatile organic compound (VOC) emissions from automotive interior materials. There are two types of methods, a whole vehicle chamber method (ISO 12219-1) and a bag method (ISO 12219-2) for evaluation of VOCs emissions from materials used in vehicle interior parts. ISO 12219-2 method describes quantitative testing of VOCs and semi-VOCs. This test method is quick and cost effective for analysis of materials for quick emission checks and can prove to be very effective in
PAtil, Yamini JitendraThipse, SukrutBawase, Moqtik
Rainwater accumulation in the cowl region, located at the base of the windshield, can lead to serious HVAC performance degradation, corrosion, and passenger discomfort if not effectively drained. Traditional physical validation methods are often time-consuming, costly, and limited in diagnostic insight. This study presents a simulation-driven methodology for evaluating and optimizing HVAC cowl box drainage performance during the early design phase. Using STAR-CCM+, a multiphase Volume of Fluid (VOF) approach was implemented to visualize water flow behavior under static and dynamic conditions. Design variants were assessed by modifying drain tube geometry (shape, size, and placement) and cowl surface features, such as baffle positioning. Results showed that inadequate drainages were primarily due to stagnation zones, shallow slopes, and drain locations prone to clogging. Water film accumulation near the HVAC inlet was accurately predicted, highlighting potential ingress paths under high
Mathew, RonnieIbrahim, SayyafNikumbh, Nayan
The increasing adoption of electric vehicles (EVs) has intensified the demand for advanced elastomeric materials capable of meeting stringent noise, vibration and harshness (NVH) requirements. Unlike internal combustion engine (ICE) vehicles, EVs lack traditional masking noise generated by the powertrain. In the automotive industry, the dynamic stiffness of elastomers in internal combustion engines has traditionally been determined using hydraulic test rigs, with test frequencies limited to a maximum of 1,000 Hz. Measurements above this frequency range have not been possible and are conducted only through computerized FE or CAE calculation models. Electric drive systems, however, generate distinct tonal noise components in the high-frequency range up to 10,000 Hz, which are clearly perceptible even at low sound pressure levels. Consequently, the dynamic stiffness characteristics of elastomers up to 3,000 Hz are critical for optimizing NVH performance in EVs. This study focuses on high
Bohne, ChristianGröne, Michael
In the automotive industry, during the early phase of development, numerical prediction of strength and durability of chassis parts become crucial as these predictions help in design optimization, selecting the appropriate material and identifying potential issues before physical prototypes are built. One of the crucial simulation requirements is the prediction of accurate load carrying capacity or bucking load of axle links. When it comes to the sheet metal axle links there is a deviation in the hardware test and CAE results for load carrying capacity due to the non-integration of forming effects in the numerical simulation, resulting in overdesign of parts, increased costs and development time. This study aims to address these challenges by integrating forming effects experienced by the part during forming process into static strength simulations. These effects include plastic straining, which contributes to material strain hardening and local thickness changes that lead to thinning
R B, GovindSelvaraj, Nirmal Velgin
India's electric 2-wheeler (E2W) market has witnessed fast growth, driven by lucrative government policies. The two-wheeler segment dominates the Indian automotive market, accounting for the largest share of total sales. Consequently, the manufacturers of 2-wheelers are developing new electric vehicles (EV) tailored for the Indian market. However, the Indian EV market has witnessed multiple fire accidents in recent years, raising safety concerns among consumers and industry stakeholders. These incidents highlight key weakness in battery thermal management systems (BTMS), particularly during charging. Most existing E2W BTMS relies on passive (natural) air cooling, which has been associated with fire incidents due to its inefficiency in heat dissipation, particularly during charging in India's high-temperature environment. Therefore, it is imperative to build thermally viable and economical BTMS for the growing E2W vehicles with fast charging capability. FEV is actively developing the
Raut PhD, AnkitHiremath, Vinodkumar SEmran, AshrafGarg, ShivamBerry, Sushil
In the realm of automotive safety engineering, the demand for efficient and accurate crash simulations is ever-increasing. As finite element (FE) modeling of components becomes increasingly detailed and the availability of advanced material models improves, crash simulations for full vehicles can become time-consuming. Evaluating the crash performance of any vehicle subsystem requires structural simulations at different levels. While the design and configuration phase deals with a local simulation in representative load cases, full vehicle simulations are required later for a final digital proof of achieved requirements and development targets. This paper introduces a novel methodology for replacing full vehicle crash simulations, as required for a local view on the structural load path development, through segment-models. By adapting segment-model simulations, a significant reduction in computational time and resource usage is achieved, thereby optimizing CPU cluster performance and
Moncayo, DavidMalipatil, AnandPrasad, RakeshKunnath, Allwin
Determination of part tolerances for reduced variation in suspension level performance by using Multi-objective Robust Design Optimization (MORDO) The car industry is very competitive, and companies need to satisfy their customers to keep or grow their market share. It’s important for car makers to build affordable cars that provide a good driving experience, comfort for passengers, and safety for everyone. Suspension systems are very important for how a vehicle rides, handles, and stays stable, and they directly affect how driving feels. If parts are not positioned correctly, it can really impact how well a vehicle works. As a result, suggested limits for where suspension parts are placed are given to prevent issues with Kinematics and Compliance (K&C) properties. So, designing parts with the right tolerances is very important in making vehicles. It helps lower production costs and keeps the vehicle's performance consistent. This paper shows a step-by-step method to find the strongest
Pathak, JugalGanesh, Lingadalu
The invention tackles the main drawback of traditional electric vehicle charge ports which use Vehicle Control Unit (VCU) communication intensively and tend to have separate actuators to fulfill the locking function and requirements. These existing systems do not only limit autonomous operation of the charging lid in ignition-off condition but they also add mechanical complexity and packaging space, as well. To overcome these limitations, this research work introduces a Smart Charge Port Housing (CPH), which combines a rotary actuator with an onboard microcontroller and single shaft self-locking device, which allows intelligent and autonomous control of the flaps without relying on vehicle wide control networks. The actuator can remember the last position that the charging lid was in so it can be operated even while the VCU is in the inactive state. The integrated self-locking functionality is achieved by using a specially designed hinge shaft that allows a certain free play for
Mohunta, SanjayKhadake, Sagar
Transportation industry is facing a growing challenge to reduce its carbon footprint and utilize the carbon neutral, more environmentally sustainable fuels to comply with the goal of carbon neutrality. Implementation of carbon free fuels such as Hydrogen, Ammonia and low carbon fuels such as Methanol, Ethanol can significantly reduce the greenhouse gas emissions, but these fuels are suitable for SI engine architecture due to their high-octane ratings. Hydrotreated Vegetable Oil (HVO) is one of the few fuel solutions available today with a high Cetane rating (70-80), that can be used as a drop-in fuel in the existing CI engines, with minimal modifications. The main constituent of HVO is pure alkane and it can be produced from feedstocks such as vegetable oils, animal fats, various wastes and by-products. A closed cycle 3-D CFD combustion simulation using a detailed chemistry-based solver has been conducted with the HVO, on a three cylinder, naturally aspirated water-cooled CI engine at
Tripathi, AyushMukherjee, NaliniNene, Devendra
In India, fuel economy is one of the most critical factors influencing a customer's decision to own a passenger car. Beyond consumer preference, fuel consumption also plays a significant role in the nation's energy security. In line with this, the government promotes fuel-efficient vehicles and technologies through various regulations, policies, and mandates. Vehicle manufacturers, in response, focus on designing vehicles that align with both customer expectations and regulatory requirements. Fuel economy certification is typically based on standardized laboratory tests that simulate controlled environmental conditions, driving cycle (MIDC), vehicle load, and operation of electrical and electronic systems. However, actual on-road driving conditions by end user vary significantly due to factors such as traffic conditions, ambient temperature, air conditioning use, driving behavior and variable loading of the vehicle. With implementation of Bharat Stage VI, Real Driving Emission (RDE
Singh, Abhay PratapBathina, Revanth KumarTijare, Shantanu
Affordable, efficient and durable catalytic converters for the two and three-wheeler industry in developing countries are required to reduce vehicle emissions and to maintain them at a low level; and therefore, to participate in a cleaner and healthier environment. Especially, metallic catalyst substrates developed by Emitec Technologies GmbH with structured foils like the Longitudinal Structure (LS), or LS-Design® are fully compatible to this effort with more than 70% share of produced 2/3 Wheelers metallic catalyst substrates for the Indian market in 2024. One decade after the market introduction of this LS structure, Emitec Technologies GmbH will introduce now a new generation of foil structure: the Crossversal Structure (CS) or CS-Design®, that improves further the affordability, the efficiency of metallic catalytic converters, keeping the durability at same level as previous substrate generation. The paper will briefly review the development of metallic substrates for 2/3 wheelers
Jayat, FrancoisSeifert, SvenBhalla, AshishGanapathy, Narayana Prakash
In current scenario, demand for alternate energy is increasing due to depletion of fossil fuels and countries working to achieve carbon neutrality by 2050. Hydrogen being a cleaner fuel, many OEMs across the world started to work on various strategies like hydrogen combustion engine and fuel cell. Passenger vehicles like buses are at the lookout for fuel cell technology at faster rate than other commercial vehicles. In fuel cell vehicles, cooling system design is critical & complex since it includes fuel cell cooling, Power electronics cooling & battery cooling. In this paper, cooling system design of a Fuel cell electric bus for inter-city application is demonstrated. Radiators and Fans are designed considering overall heat rejection and Coolant inlet temperature requirements of components. Cooling system circuit and pump is decided to meet the coolant flow rate targets. Flow simulation and thermal simulation done with the help of simulation models built using software KULI to predict
M S, VigneshKiran, Nalavadath
This invention solves a significant safety issue where drivers have low visibility of the Outside Rear View Mirror (ORVM) in the case of rain, fog, dust or ice formation on the Side Door Window Glass (SDWG). Currently developed methods, such as hydrophobic finishing or films and heated window glass on the doors, provide temporary or weak results, and thus, a more successful and dependable method is demanded. In order to address this problem, we have modified the Outer Waist Seal, which includes a Glass Wiping Mechanism in it. Outer Waist Seal is a type of weather strip fixed on the bottom of the side window of a vehicle on the panel of the door. It does not allow the flow of heavy water, dust and debris into the door cavity, besides supporting the glass on the window when it is in a movement process. The stationary fixed arm of this system is coupled with a rotating arm and an attached wiper blade powered by a low-speed-high-torque motor and interfaced with the Body Control Module (BCM
Neelam, RajatChowdhury, AshokPanchal, GirishKumar, Saurav
India’s severe road safety challenges, marked by high accident rates and fatalities, necessitate innovative solutions like Advanced Driver Assistance Systems (ADAS) to align with SIAT 2026’s theme, “Innovative Pathways for Safe and Sustainable Mobility.” This paper synthesizes recent studies to explore ADAS’s role in enhancing safety and sustainability in India’s unique traffic environment. Technologies such as automatic emergency braking, lane departure warnings, and driver monitoring systems show promise in reducing crashes caused by human error, a leading factor in road incidents. However, India’s complex road conditions—unmarked lanes, dense urban traffic, and prevalent two-wheelers—pose significant challenges to ADAS effectiveness. There developed is a strong public support recently for ADAS, with many Indian road users recognizing its safety benefits and advocating for its integration into vehicles especially passenger vehicles. Despite growing adoption by automakers like Tata
Neelakanthu, KarraSreenivasulu, TKumar, OmHaregaonkar, Rushikesh SambhajiKumar, Rajiv
As the brain and the core of the electric powertrain, the traction inverter is an essential part of electric vehicles (EVs). It controls the power conversion from DC to AC between the electric motor and the high-voltage battery to enable effective propulsion and regenerative braking. Strong and scalable inverter testing solutions are becoming more essential as EV adoption rises, particularly in developing nations like India. In India, traditional testing techniques that use actual batteries and e-motors present several difficulties, such as significant safety hazards, inadequate infrastructure, expensive battery prices, and a shortage of prototype-grade parts. This paper presents a comprehensive approach for traction inverter validation using the AVL Inverter TS™ system incorporating an advanced Power Hardware-in-the-Loop (PHiL) test system based on e-motor emulation technology. It enables safe, efficient, and reliable testing eradicating the need for actual batteries or mechanical
Mehrotra, SoumyaChhabra, Rishabh
Ambient light reflecting off internal components of the car, specifically the Head-Up Display (HUD), creates unwanted reflections on the Windshield. These reflections can obscure the driver's field of view, potentially compromising safety and reducing visual comfort. The extent of this obscuration is influenced by geometrical factors such as the angle of the HUD and the curvature of the Windshield, which need to be analyzed and managed. The primary motivation is to improve driver safety and visual comfort. This is driven by the need to address the negative impact of ambient light reflecting off Head-Up Displays (HUDs), which can impair visibility through the Windshield. There is a need for tools and methods to address this issue proactively during the vehicle design phase. This study employs a tool-based modeling method to trace the pathways of ambient light from its source, reflecting off the HUD, and onto the Windshield using a dimensional modeling tool. It focuses on: Geometrical
Muchchandi, VinodAkula, Satya JayanthMahindrakar, PramodG S, Sharath
The Container trailers are used worldwide to transport goods & materials especially e-commerce applications with valuable materials. These container trailers are presently locked with a mechanical locking system and often broken and unlocked by unauthorized people. During transportation time, the driver stops the vehicle for natural calls, food or any other breakdown, the attempt is made to steal the materials. Many cases were known only after damages are done. It has become a serious issue nowadays in the transportation industry. To avoid these problems, we have designed and developed a system that operates pneumatically with digital locking control. The system is designed to ensure proper safety by rigid mechanical locking. It is actuated by a pneumatic system consisting of Directional control valve & pneumatic cylinders. The lock and unlock inputs are given through digitally and the digital controller provides the appropriate input to solenoid operated direction control valve. Based
kumaran, Rajasekar
Integrating advanced technologies into modern vehicles has led to an increasing focus on Functional Safety (FuSa), especially for the Automotive Integrated Cluster Module (ICM) to ensure the safety of the driver and passengers. This paper highlights the need to bring certain ICM components under an Automotive Safety Integrity Level B (ASIL-B) context using Classic AUTOSAR. This paper discusses the challenges faced and the solutions implemented for achieving compliance with ISO 26262 standards along with the Classic AUTOSAR framework. We are proposing a standardized and structured methodology for the design of the components in compliance with the key safety principles, including Freedom from Interference (FFI), execution under privileged levels, and integrity verification, particularly by adopting Classic AUTOSAR frameworks. This paper also presents the Functional Safety (FuSa) goals for these components and also extend to their configuration management and updating strategies within
Singh, IqbalKumar, Praveen