Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 720

Recently Published

Browse All
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered. The integration of NBC
AC-9 Aircraft Environmental Systems Committee
The intent of this report is to encourage that the thermal management system architecture be designed from a global platform perspective. Separate procurements for air vehicle, propulsion system, and avionics have contributed to the development of aircraft that are sub-optimized from a thermal management viewpoint. In order to maximize the capabilities of the aircraft for mission performance and desired growth capability, overall system efficiency and effectiveness should be considered. This document provides general information about aircraft Thermal Management System Engineering (TMSE). The document also discusses approaches to processes and methodologies for validation and verification of thermal management system engineering. Thermal integration between the air vehicle, propulsion system, and avionics can be particularly important from a thermal management standpoint. Due to these factors, this report is written to encourage the development of a more comprehensive system
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Recommended Practice (ARP) defines recommended analysis and test procedures for qualification of pneumatically, electrically, manually, and hydraulically actuated air valves. They may be further defined as valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff). Qualification testing performed on the airplane to verify compatibility of the valve function and stability as part of a complete system is outside the scope of this document. Refer to ARP1270 for design and certification requirements for cabin pressurization control system components. As this document is only a guide, it does not supersede or relieve any requirements contained in detailed Customer specifications.
AC-9 Aircraft Environmental Systems Committee
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
Bogie frame is a main skeleton and structural member in railway system which is carrying all the loads such as Suspensions, Axles, wheels, car body, Motor, Gear box etc. The frame is subjected an exceptional and service stresses in Vertical, Longitudinal, Lateral and twist directions throughout the service life which should be withstand for a life span of 30 years without failure. The purpose of this project is to determine the Structural integrity of the Metro rail bogie frame in consideration with EN13749 standard. This paper is the outcome of bench testing of metro rail bogie frame with the application of multiaxial loading in static and dynamic campaign through which stress data is collected with strain gauge sensors and correlated with the FEA results at initial design phase. This helps to verify and evaluate the design and validate the quality of metro rail frame as per the requirement specified in EN13749:2021 European standard in early design stages.
Tormal, Uday BapuraoSinnarkar, NitinShinde, Vikram
The automotive wiring harness (length of 4-5 km) is a very important and complex system in the development of a modern car due to lot of new electric & electronic components and sensors. It is a very sensitive material unlike metals and is considered as a composite which is highly anisotropic in nature, as it consists of several different layers of copper/aluminum strands and insulation. Because of insulation, wiring harness exhibits viscous plastic behavior which is crucial in determining the durability and long-term performance of the cables. Material property has a crucial role in determining the behavior of wiring harness after assembly into the car. Wiring harness may undergo Bending, Torsion and Tension loads, causing the stress and strain in the individual electrical wires. The lack of CAE validation of the wiring harness routing may lead to extra costs for the automotive OEMs during product development. This study explains the novel method of Testing the Cables and Bundles
Beesetti, SivaKalkala Balakrishna, PrasadJames Aricatt, JohnShah, DipamTas, OnurKrogmann, Stephan
Nitrile Butadiene Rubber (NBR), known for its superior resistance to hydrocarbon oil, low gas permeability, and excellent thermal stability, finds extensive use in seals, O-rings, conveyor belts etc. Importantly, these performance attributes are chiefly governed by acrylonitrile content in NBR. Analytical characterization of raw NBR is relatively straightforward using conventional techniques such as elemental analysis (CHNS) and liquid state 13C NMR. In contrast, the analysis of vulcanized NBR presents considerable challenges due to its crosslinked structure, which renders it insoluble in most organic and inorganic solvents, thereby restricting direct molecular-level analysis. While solid-state 13C NMR is an established technique for structural characterization in rubber vulcanizates, its high-cost curbs routine industrial analysis. In this study, Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS) technique has been explored as a robust, precise, cost-effective alternative
Samanta, RajyasreeGhosh, DebojitAnjana, KanhaiyaSen, AmitGuria, BiswanathChanda, JagannathSamui, BarunGhosh, PrasenjitMukhopadhyay, Rabindra
As emission regulations grow increasingly stringent, aftertreatment system designs are becoming more complex, requiring robust performance across the full range of Engine Operating Points (EOPs). Traditionally, aftertreatment development has relied on Computational Fluid Dynamics (CFD) simulations conducted at a limited set of representative points, focusing primarily on single performance objectives such as minimizing back pressure, enhancing ammonia uniformity, or reducing Diesel Exhaust Fluid (DEF) deposits. However, these objectives are inherently interdependent, and optimizing for a single parameter often negatively impacts others, leading to suboptimal system performance across the full engine map. To address these challenges, this paper presents a multi-objective optimization framework combined with a reduced-order modeling approach to predict aftertreatment system behavior across the full engine operating range. The methodology captures the interactions among various
Nanduru, EnochWilley, DonaldUdhane, Tushar SudamPal, Yash
The distribution of mobility equipped with electrified power units is advancing towards carbon-neutral society. The electrified power units require an integration of numerous hardware components and large-scale software to optimize high-performance system. Additionally, a value-enhancement cycle of mobility needs to be accelerated more than ever. The challenge is to achieve high-quality performance and high-efficient development using Model-Based Development (MBD). The development process based on V-model has been applied to electrified power units in passenger vehicle. Traditionally, MBD has been primarily utilized in the left bank (performance design phase) of the V-model for power unit development. MBD in performance design phase has been widely implemented in research and development because it refines prototype performance and reduces the number of prototypes. However, applying the MBD to an entire power unit development process from performance design phase to performance
Ogata, KenichiroKatsuura, AkihiroTsuji, MinakoMatsumoto, TakumiIwase, HiromuNakasako, SeiyaTakahata, Motoki
Gear noise is a common challenge that all gear manufacturers must contend with. In tractors, while it is often sufficiently low in intensity to not pose a significant issue, there are instances where gear whine may occur which is noticeable. In such cases, identifying the source and effectively addressing the problem can prove to be particularly difficult. This paper addresses the root cause analysis carried out for the evaluation of factors influencing whine noise behavior of Spiral bevel gear pair (SO2) in a tractor transmission system. Numerous publications have been published on gear noise of spiral bevel gear pair, too many to list here. However, once the gearbox assembled into the transmission, such models are of limited practical value. The work explained in this paper is a typical example offers avenues in correcting the issue using more limited means.
P, BharathP, PriyadarshanJanarthanan, Devakumara RajaChavan, Amit
Modern automotive powertrains are increasingly adopting engine downsizing and down speeding to meet stringent emission regulations and improving fuel efficiency However, these changes result in higher torsional vibrations excitation amplitudes and NVH (Noise, Vibration, and Harshness) refinement more challenging. With growing customer expectations for premium driving experiences conventional clutch is no longer sufficient. To meet the NVH performance targets of the vehicle Dual Mass Flywheels (DMFs) are used In DMF due to lower stiffness and inertia separation there is a greater advantage on torsional filtration in normal drive and idle condition. But the torsional resonance frequency of the connected DMF is lower than the idle RPM. Engine startup is a key drawback with DMF equipped vehicles. The proper tuning of starter motor performance & DMF stiffness is required to cross the resonance zone faster otherwise it will lead to DMF to stay in the resonance zone for a longer time leading
Jayachandran, Suresh KumarVijayaragavan, ThirupathiM, DevamanalanKanagaraj, PothirajAhire, ManojVellandi, Vikraman
Ammonia has emerged as a promising alternative fuel for transportation because of its high energy density (NH3 has more hydrogen than propane in a similar size tank), simple and carbon-free combustion, and potential to produce sustainably. This paper investigates the feasibility of using ammonia as fuel for internal combustion engines (ICE) and fuel cells in automotive applications. In many ways, ammonia captures these benefits by being produced from renewable energies and having the potential to reduce reliance on fossil fuels. There are significant drawbacks of ammonia however, such as its decreased energy content per unit volume, NOx emissions potential, and necessary engine adaptations. This paper discusses the combustion characteristics of ammonia and how it functions in typical ICE's as well as new fuel cell technology, and the necessary infrastructure to produce, store, and distribute ammonia for automotive applications. The study compares operations to conventional fuels
Jadhav, AjinkyaBandyopadhyay, DebjyotiSutar, Prasanna SSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut S
This paper presents a novel structural solution for side impact protection of high-voltage battery packs in electric trucks. While electric vehicles offer benefits like zero emissions and independence from fossil fuels, in turn present challenges in meeting crashworthiness standards and safety regulations. The device addresses the critical need for effective battery protection & styling of battery electric vehicles. The integration of a hybrid corrugated panel system with plastic side fairings is innovative, combining crashworthiness with aerodynamic and aesthetic benefits. The crash protection features two hat-section steel channels at the top and bottom and corrugated steel sheet with alternating ridges is attached to these channels. Corrugated panels are enforced with help of backing strips. This assembly is mounted on shear plates at both ends, secured to the vehicle's frame rail. During a side impact event, the plastic side fairings absorb the initial impact, crumpling easily. If
Badgujar, PrathameshDevendra, AwachareHansen, Benjamin
The US trucking industry heavily relies on the diesel powertrain, and the transition towards zero-emission vehicles, such as battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV), is happening at a slow pace. This makes it difficult for truck manufacturers to meet the Phase 3 Greenhouse Gas standards, which mandate substantial emissions reductions across commercial vehicle classes beginning of 2027. This challenging situation compels manufacturers to further optimize the powertrain to meet stringent emissions requirements, which might not account for customer application specifics may not translate to a better total cost of ownership (TCO) for the customer. This study uses a simulation-based approach to connect customer applications and regulatory categories across various sectors. The goal is to develop a methodology that helps identify the overlap between optimizing for customer applications vs optimizing to meet regulations. To use a data-driven approach, a real
Mohan, VigneshDarzi, Mahdi
Accidents during lane changes are increasingly becoming a problem due to various human based and environment-based factors. Reckless driving, fatigue, bad weather are just some of these factors. This research introduces an innovative algorithm for estimating crash risk during lane changes, including the Extended Lane Change Risk Index (ELCRI). Unlike existing studies and algorithms that mainly address rear-end collisions, this algorithm incorporates exposure time risk and anticipated crash severity risk using fault tree analysis (FTA). The risks are merged to find the ELCRI and used in real time applications for lane change assist to predict if lane change is safe or not. The algorithm defines zones of interest within the current and target lanes, monitored by sensors attached to the vehicle. These sensors dynamically detect relevant objects based on their trajectories, continuously and dynamically calculating the ELCRI to assess collision risk during lane changes. Additionally
Dharmadhikari, MithilS, MrudulaNair, NikhilMalagi, GangadharPaun, CristinBrown, LowellKorsness, Thomas
There is continuous push from the legislation for stringent fuel economy and emission regulations while the modern customers are demanding more engaging driving experience in terms of performance and refinement. To meet this Tata Motors has developed an advanced 1.2L 3-cylinder turbocharged gasoline direct injection engine. This next-generation powertrain delivers optimum efficiency, reduced emissions, superior performance with refined NVH characteristics. The key features used to enable these demanding requirements includes a 35 MPa fuel injection system, Miller Cycle operation and electrically actuated variable nozzel turbocharger (VNT). A uniquely designed BSVI complaint (WLTP ready) exhaust after-treatment system with Four-Way Conversion Catalyst (FWC+TM) ensures optimum emission control. A centrally mounted variable cam phaser minimizes pumping losses. The lightweight yet rigid all-aluminum engine structure, featuring an integrated structural oil sump, enhances durability and
Hosur, ViswanathaGhadge, Ganesh NarayanJoshi, ManojJadhav, AashishPanwar, Anupam
Real-world crashes involve diverse occupants, but traditional restraint systems are designed for a limited range of body types considering the applicable regulations and protocols. While conventional restraints are effective for homogeneous occupant profiles, these systems often underperform in real-world scenarios with diverse demographics, including variations in age, gender, and body morphology. This study addresses this critical gap by evaluating adaptive restraint systems aligned with the forthcoming EURO NCAP 2026 protocols, which emphasize real-world crash diversity and occupant type. Through digital studies of frontal impact scenarios, we analyze biomechanical responses using adaptive restraints across varied occupant demographics, focusing on head and chest injury (e.g., Chest Compression Criterion [CC]). This study used a Design of Experiments (DOE) approach to optimize occupant protection by timing the actuating of these adaptive systems. The results indicate that activating
satija, AnshulSuryawanshi, YuvrajChavan, AvinashRao, Guruprakash
The present work highlights a case-study that aims to determine the performance (power input/output) and battery temperature on in-house developed e-rickshaw battery pack. With the rise of e-rickshaws in Indian market, the demand for the batteries have also increased and being the largest state-run energy company of India, R&D Centre of Indian Oil Corporation Limited (IOCL) has developed a chemically modified nanomaterial-based lead acid battery. The lab scale experiments, which are not presented in the study due to confidentiality and intellectual property obligations, indicated that the nanomaterial doped lead acid battery pack performs better than the control (reference) and leading commercial batteries in terms of lifecycle, capacity etc. Subsequently, this paper highlights the performance with IOC R&D Centre manufactured 12V/100AH chemically modified (nanomaterial) lead acid battery pack for e-rickshaw on duty cycle developed indigenously based on the city driving experiences. The
Saroj, ShyamsherSithananthan, MKumar, PrashantArora, AjaySundaram, PKalita, Mrinmoy
This paper explores the requirement of multi speed – multi motor torque vectoring in a battery electric commercial truck. The area of focus was to compare the vehicle performance and range of a BEV truck with conventional central drive single motor configuration with the same vehicle consisting of a multi speed – multi motor torque vectoring control strategy. Through this exercise, we have analysed the motor power and torque requirements to meet the vehicle performance along with the required reduction ratios. A MATLAB based vehicle model is used to simulate the effect of multi motor operation on the vehicle range. Also simulated the effect of torque vectoring control algorithm on the vehicle performance like steady state cornering(SSC), Double Lane change (DLC), Off road dive Cycle, vehicle stability and turning circle diameter(TCD).
Pethkar, ShivanandS, SrivatsaGhosh, Sandeep
With the inevitable shift of automotive industry towards E-mobility and mandatory fuel efficiency targets, there is a need to evaluate the energy losses in the vehicle & identify potential areas of improvement. Energy losses are calculated for different components in the corner module system of a passenger car. Contribution of losses (resistances) from respective component are depicted using simple analytical models. Potential energy saving improvements were identified and analyzed basis emerging technologies in respective areas.
Raghatate, Kumar ShreyasVedartham, RaghavendraKhanger, RakeshBisht, Arun
In today's dynamic driving environments, reliable rear wiping functionality is essential for maintaining safe rearward visibility. This study sharing the next-generation rear wiper motor assembly that seamlessly integrates the washer nozzle, delivering improved performance alongside key benefits such as better Buzz, Squeak, and Rattle (BSR) characteristics, reduced system complexity, cost savings, and enhanced perceived quality. This integrated design simplifies the hose routing which improves the compactness and the efficiency of the design. This also enhances the spray coverage and minimizes the dry wiping unlike the traditional systems that position the washer nozzle separately. A non-return valve (NRV) is incorporated to eliminate spray delays ass it maintains consistent water flow giving cleaning effectiveness. Since this makes the nonfunctional parts completely leak proof due to the advanced sealing, it increases the durability and reliability in long run. As this proposal offers
Dhage, PrashantK, NagarajanG, Sabari Rajan
In-vehicle communication among different vehicle electronic controller units (ECU) to run several applications (I.e. to propel the vehicle or In-vehicle Infotainment), CAN (Controller Area Network) is most frequently used. Given the proprietary nature and lack of standardization in CAN configurations, which are often not disclosed by manufacturers, the process of CAN reverse engineering becomes highly complex and cumbersome. Additionally, the scarcity of publicly accessible data on electric vehicles, coupled with the rapid technological advancements in this domain, has resulted in the absence of a standardized and automated methodology for reverse engineering the CAN. This process is further complicated by the diverse CAN configurations implemented by various Original Equipment Manufacturers (OEMs). This paper presents a manual approach to reverse engineer the series CAN configuration of an electric vehicle, considering no vehicle information is available to testing engineers. To
Kumar, RohitSahu, HemantPenta, AmarBhatt, Purvish