Your Destination for Mobility Engineering Resources
Recently Published
Browse AllThis specification covers the requirements for electrodeposited cadmium on metal parts.
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 130 ksi (895 MPa) tensile strength.
This specification covers a magnesium alloy in the form of investment castings (see 8.6).
This specification covers the requirements for silver deposited on metal parts with a copper strike between the basis metal and the silver deposit.
This document establishes a standardized test method designed to provide stakeholders—including runway deicing/anti-icing product manufacturers, users, regulators, and airport authorities—with a means of evaluating the relative ice penetration capacity of runway deicing and anti-icing products over time. The method measures ice penetration as a function of time, thereby enabling comparative assessments under controlled conditions. While commonly applied to runway treatments, these products may also be used on taxiways and other paved surfaces. The test is not intended to provide a direct measurement of the theoretical or extended ice penetration time of liquid or solid deicing/anti-icing products. Instead, it offers a practical and reproducible basis for performance evaluation, supporting operational decision-making and regulatory compliance.
This specification covers a copper-beryllium alloy in the form of bars and rods (see 8.5).
This SAE Aerospace Recommended Practice (ARP) defines recommended analysis and test procedures for qualification of pneumatically, electrically, manually, and hydraulically actuated air valves. They may be further defined as valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff). Qualification testing performed on the airplane to verify compatibility of the valve function and stability as part of a complete system is outside the scope of this document. Refer to ARP1270 for design and certification requirements for cabin pressurization control system components. As this document is only a guide, it does not supersede or relieve any requirements contained in detailed Customer specifications.
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered. The integration of NBC
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
This paper presents the design of a cost-effective fuel injector driver designed for accelerated testing of injectors. The driver simulates injection patterns across a wide range of vehicle operating conditions and can be programmed with injection maps for different engines, test cycles based on drawing specifications, pre-defined engine running profiles, and manual control, where the user defines PWM frequency and duty cycle. It also enables remote operation through a Wi Fi access point. An injector driver-based test setup was developed to study wear and evaluate leakage tendency in an injector design. To simulate extended field usage in a short timeframe, an accelerated operating cycle was derived using telematics data. Injector samples were tested with periodic leak rate measurements. Conducting such tests at vehicle level or on engine test bench would involve significant time and cost. This setup is an effective tool for rapid comparative analysis across supplier design, enabling














