Your Destination for Mobility Engineering Resources
Recently Published
Browse AllThis specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
This paper elucidates the implementation of software-controlled synchronous rectification and dead time configuration for bi-directional controlled DC motors. These motors are extensively utilized in applications such as robotics and automotive systems to prolong their operational lifespan. Synchronous rectification mitigates large current spikes in the H-bridge, reducing conduction losses and improving efficiency [1]. Dead time configuration prevents shoot-through conditions, enhancing motor efficiency and longevity. Experimental results demonstrate significant improvements in motor performance, including reduced thermal stress, decreased power consumption, and increased reliability [2]. The reduction in power consumption helps to minimize thermal stress, thereby enhancing the overall efficiency and longevity of the motor.
The aim of this study is to develop a validated simulation method that accurately predicts vehicle behavior during a sudden loss of assist while cornering. The method also evaluates the steering effort required to return the vehicle to its intended path during failure scenarios, isolating the impact of uncertainties arising from driver performance. To illustrate the simulation methodology, the study involved testing various vehicles under conditions replicating sudden EPS assist loss during cornering. These tests captured the vehicle’s response, and the steering effort needed to correct its path. Different parameters affecting the vehicle behavior were studied and a validated method of simulation was developed.
Modern vehicle technologies such as keyless entry, push-button start, digital switches have made it easier and more convenient to operate cars. However, this ease of operation has also introduced new safety concerns, particularly the increased risk of accidental operations by children. This can lead to unintentional vehicle movement, injuries, and even fatalities. Existing safety features (e.g., unattended child presence alarms) mitigate entrapment risks but do not prevent children from unintentionally starting or shifting while inside. This paper proposes implementation of a solution for child-safety system which inhibits certain functionalities to prevent accidental operations by underage occupants. The proposed system combines multiple existing technologies like weight sensors, seat position detection, facial recognition, in vehicle camera tracking to determine the child presence. With this, certain operations can be temporarily inhibited, or the vehicle can ask for secondary
The impact configuration has a strong influence on the rear seat survival space intrusion pattern during severe rear-impact collisions. The relative contributions of rear seat pan forward intrusion versus rear seatback intrusion vary depending on the nature of the crash. In underride impacts, the rear wheels are pushed forward into the occupant survival space from below, causing the rear seat-pan to move forward and upward relative to the vehicle interior. Conversely, override impacts tend to produce direct seatback intrusion into the rear compartment. This study used a validated computer model from the NHTSA website to simulate various types of rear compartment intrusions under different impact configurations. The analysis also assessed structural countermeasures designed to minimize occupant survival space intrusion. The results demonstrate that underride impacts primarily drive the forward motion of the rear wheels into the structure, establishing load paths that lead to structural
Tire noise reduction is important for improving ride comfort, especially in electric vehicle due to lack of engine noise and majority of the noise generated in-cabin is from tire-road interaction. Therefore, the tire tread pattern contribution is one of the important criteria for NVH performance apart from other structurally generated noise and vibration. In this work a GUI-based pitch sequence optimization tool is developed to support tire design engineers in generating acoustically optimized tread sequences. The tool operates in two modes: without constraints, where the pitch sequence is optimized freely to reduce tonal noise levels; and with constraints, where specific design rules are applied to preserve pattern consistency and manufacturability. The key point to be considered in this pitch sequence is that it should be reducing the tonal sound and equally spread i.e., the same pitch cannot be concentrated on one side which may lead to non-uniformity. So, the restriction is that
During parking conditions of vehicles, the state of the battery is uncertain as it goes through the relaxation process. In such scenarios, the battery voltage may exceed the functional safety limits. If we cross the functional safety limits, it is hazardous to the driver as well as the occupant. In this case, relaxed voltage plays a crucial role in identifying the safe state of the battery. To estimate the relaxed cell voltage there are methods such as RC filter time constat modeling and relaxation voltage error method. The problem with these solutions is the waiting time and accuracy to determine the relaxation voltage. In this manuscript, a solution is proposed which ensures the above problem is reduced. To achieve the reduction of relaxation voltage estimation time, a python sparse identification of nonlinear dynamics (PySindy) is used which identifies and fits an equation model based on observing the battery characteristics at different SOC and temperatures. The implementation is
In pursuit of a distinct sporty interior sound character, the present study explores an innovative strategy for designing intake systems in passenger vehicles. While most existing literature primarily emphasizes exhaust system tuning for enhancing vehicle sound quality, the current work shifts the focus toward the intake system’s critical role in shaping the perceived acoustic signature within the vehicle cabin. In this research work, target cascading and settings were derived through a combination of benchmark and structured subjective evaluation study and aligning with literature review. Quantitative targets for intake orifice noise was defined to achieve the desired sporty character inside cabin. Intake orifice targets were engineered based on signature and sound quality parameter required at cabin. Systems were designed by using advanced NVH techniques, Specific identified acoustic orders were enhanced in the intake system to reinforce the required signature in acceleration as well














