Your Destination for Mobility Engineering Resources
Recently Published
Browse AllDuring parking conditions of vehicles, the state of the battery is uncertain as it goes through the relaxation process. In such scenarios, the battery voltage may exceed the functional safety limits. If we cross the functional safety limits, it is hazardous to the driver as well as the occupant. In this case, relaxed voltage plays a crucial role in identifying the safe state of the battery. To estimate the relaxed cell voltage there are methods such as RC filter time constat modeling and relaxation voltage error method. The problem with these solutions is the waiting time and accuracy to determine the relaxation voltage. In this manuscript, a solution is proposed which ensures the above problem is reduced. To achieve the reduction of relaxation voltage estimation time, a python sparse identification of nonlinear dynamics (PySindy) is used which identifies and fits an equation model based on observing the battery characteristics at different SOC and temperatures. The implementation is
Growing population in Indian cities has led to packed roads. People need a quick option to commute for both personal trips and business needs. The 2-3 Wheel Combination Vehicle is a new, modular solution that switches between a two-wheeler (2W) and a three-wheeler (3W). Hero has designed SURGE S32 to be a sustainable and flexible transportation option. It is world’s first class changing vehicle. The idea is to use a single vehicle for zipping through city traffic, making deliveries, or earning an income. Manufactured to deal with the challenges of modern life, this dual-battery convertible vehicle can easily transform from a two-wheeler to a three-wheeler and vice versa within three minutes. The Surge S32 is a versatile vehicle that replaces the need for multiple specialised vehicles. By lowering the number of vehicles on the road, it decreases road congestion, reduces emissions, and improves livelihoods. It powers by electricity, ensuring sustainability in all aspects. The current
In pursuit of a distinct sporty interior sound character, the present study explores an innovative strategy for designing intake systems in passenger vehicles. While most existing literature primarily emphasizes exhaust system tuning for enhancing vehicle sound quality, the current work shifts the focus toward the intake system’s critical role in shaping the perceived acoustic signature within the vehicle cabin. In this research work, target cascading and settings were derived through a combination of benchmark and structured subjective evaluation study and aligning with literature review. Quantitative targets for intake orifice noise was defined to achieve the desired sporty character inside cabin. Intake orifice targets were engineered based on signature and sound quality parameter required at cabin. Systems were designed by using advanced NVH techniques, Specific identified acoustic orders were enhanced in the intake system to reinforce the required signature in acceleration as well
Generally, in an electric sports utility vehicle with rear mounted powertrain the mass distribution is greater in the rear compared to front. This higher rear to front weight distribution results in oversteer behavior during high-speed cornering deteriorating vehicle handling & risking passenger safety. To compensate this inherent oversteer nature of such vehicles & produce understeer behavior, the steering rack is placed frontwards of the front wheel center for toe-out behavior due to lateral compliance during cornering. This compensation measure results in lower Ackermann percentage resulting in higher turning circle diameter deteriorating vehicle maneuverability. This paper proposes a design to obtain ideal understeer gradient with minimal turning circle diameter through utilization of split link technology with a McPherson Strut based suspension framework & frontwards placed steering rack. This suspension is utilized in our Mahindra Inglo platform. This paper elaborates on how
This paper focuses on the cabin sound quality refinement and the tactile vibration reduction during horn application in the electric vehicle. A loud cracking sound inside the cabin and higher accelerator pedal vibration are perceived while operating the horn. Sound diagnosis is carried out to find out the frequencies causing the cracking noise. Transfer path analysis is conducted to identify the nature of noise and the predominant path through which forces transfer. Based on finding from TPA, various recommendations are evaluated which reduced the noise to a certain extent. Operational Deflection Shape (ODS) is conducted on the horn mounting bracket and on the body to identify the component having higher deflection at the identified frequencies. Recommendations like DPDS improvement on the horn bracket and the body is assessed and the effect of each outcome is discussed. With all the recommendations proposed, the cabin noise levels are reduced by ~ 8 dB (A) and the accelerator pedal
The aim of this study is to develop a validated simulation method that accurately predicts vehicle behavior during a sudden loss of assist while cornering. The method also evaluates the steering effort required to return the vehicle to its intended path during failure scenarios, isolating the impact of uncertainties arising from driver performance. To illustrate the simulation methodology, the study involved testing various vehicles under conditions replicating sudden EPS assist loss during cornering. These tests captured the vehicle’s response, and the steering effort needed to correct its path. Different parameters affecting the vehicle behavior were studied and a validated method of simulation was developed.
Ambient light reflecting off internal components of the car, specifically the Head-Up Display (HUD), creates unwanted reflections on the Windshield. These reflections can obscure the driver's field of view, potentially compromising safety and reducing visual comfort. The extent of this obscuration is influenced by geometrical factors such as the angle of the HUD and the curvature of the Windshield, which need to be analyzed and managed. The primary motivation is to improve driver safety and visual comfort. This is driven by the need to address the negative impact of ambient light reflecting off Head-Up Displays (HUDs), which can impair visibility through the Windshield. There is a need for tools and methods to address this issue proactively during the vehicle design phase. This study employs a tool-based modeling method to trace the pathways of ambient light from its source, reflecting off the HUD, and onto the Windshield using a dimensional modeling tool. It focuses on: Geometrical














