Your Destination for Mobility Engineering Resources
Announcements for SAE Mobilus
Browse AllRecent SAE Edge™ Research Reports
Browse All 171Recent Books
Browse All 698Recently Published
Browse AllVehicles are prime examples of cyber-physical systems that rely on multiple domains, including mechanics, electronics, and software. Due to high customizability and software changes introduced by bug fixes or functional upgrades, vehicle instances vary in space (variants) and time (versions). This results in a huge number of possible variants and versions; thus, testing all combinations to ensure functional safety is practically infeasible. Moreover, components of all domains interact with each other; thus, solely focusing on single domains while testing multi-domain cyber-physical systems is insufficient. In this paper, we propose a process for change-aware testing of cyber-physical systems, including test activities we identified during a literature analysis. The process consists of multiple structured steps, including the selection of affected variants, test case selection, and adaptive configuration of test environments. Based on the process and identified activities, we discuss
The design, development, and optimization of modern suspension systems is a complex process that encompasses several different engineering domains and disciplines such as vehicle dynamics simulation, tire data analysis, 1D lap-time simulation, 3D CAD design and structural analysis including full 3D collision detection. Typically, overall vehicle design and suspension development are carried out in multiple iterative design loops by several human specialists from diverse engineering departments. Fully automating this iterative design process can minimize manual effort, eliminate routine tasks and human errors, and significantly reduce design time. This desired level of automation can be achieved through digital modeling, automated model generation, and simulation using graph-based design languages and an associated language compiler for translation and execution. Graph-based design languages ensure the digital consistency of data, the digital continuity of processes, and the digital
The U-Shift IV represents the latest evolution in modular urban mobility solutions, offering significant advancements over its predecessors. This innovative vehicle concept introduces a distinct separation between the drive module, known as the driveboard, and the transport capsules. The driveboard contains all the necessary components for autonomous driving, allowing it to operate independently. This separation not only enables versatile applications - such as easily swapping capsules for passenger or goods transportation - but also significantly improves the utilization of the driveboard. By allowing a single driveboard to be paired with different capsules, operational efficiency is maximized, enabling continuous deployment of driveboards while the individual capsules are in use. The primary focus of U-Shift IV was to obtain a permit for operating at the Federal Garden Show 2023. To achieve this goal, we built the vehicle around the specific requirements for semi-public road