Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 720

Recently Published

Browse All
This SAE Aerospace Information Report (AIR) establishes guidelines for evaluating composite electrical connectors and accessories.
AE-8C1 Connectors Committee
Autonomous vehicles regardless of the drivetrain configuration are highly sensitive to disturbances, uncertain dynamic parameters, and modeling errors. Neglecting these factors during trajectory-tracking or lane-keeping can cause the autonomous vehicle (AV) to deviate from its reference path, compromising safety and performance. In this work, a fixed-time prescribed performance backstepping controller integrated with a super-twisting-like algorithm is proposed to ensure fixed-time convergence of trajectory-tracking errors and robust stability under bounded uncertainty factors and external disturbances. A fixed-time prescribed performance approach is utilized to constrain the evolution of lateral and angular tracking errors, thereby limiting the risk of divergence and ensuring control stability. This framework is demonstrated by the Lyapunov-based stability analysis to demonstrate fixed-time stability in an arbitrarily small neighborhood around the origin. The framework is also
Bancel, BaptisteKali, YassineNerguizian, VahéSaad, Maarouf
This specification establishes the requirements for an expanded polytetrafluoroethylene (ePTFE) in the form of sealing tape, gaskets, or sheets requiring no mixing or curing.
AMS G9 Aerospace Sealing Committee
This specification covers the requirements for electrodeposited cadmium on metal parts.
AMS B Finishes Processes and Fluids Committee
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 130 ksi (895 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a magnesium alloy in the form of investment castings (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers the requirements for silver deposited on metal parts with a copper strike between the basis metal and the silver deposit.
AMS B Finishes Processes and Fluids Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of pre-alloyed powder.
AMS AM Additive Manufacturing Metals
This document establishes a standardized test method designed to provide stakeholders—including runway deicing/anti-icing product manufacturers, users, regulators, and airport authorities—with a means of evaluating the relative ice penetration capacity of runway deicing and anti-icing products over time. The method measures ice penetration as a function of time, thereby enabling comparative assessments under controlled conditions. While commonly applied to runway treatments, these products may also be used on taxiways and other paved surfaces. The test is not intended to provide a direct measurement of the theoretical or extended ice penetration time of liquid or solid deicing/anti-icing products. Instead, it offers a practical and reproducible basis for performance evaluation, supporting operational decision-making and regulatory compliance.
G-12RDP Runway Deicing Product Committee
This specification covers a copper-beryllium alloy in the form of bars and rods (see 8.5).
AMS D Nonferrous Alloys Committee
This SAE Aerospace Recommended Practice (ARP) provides general guidelines for defining a specification for an electromechanical actuator (EMA) motor. This document is for permanent magnet brushed and brushless motors.
A-6B3 Electro-Mechanical Actuation Committee
This specification covers a low-alloy steel in the form of bare welding wire. Type 2 - copper coated wire was removed from this document (see 8.4).
AMS E Carbon and Low Alloy Steels Committee
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered. The integration of NBC
AC-9 Aircraft Environmental Systems Committee
The intent of this report is to encourage that the thermal management system architecture be designed from a global platform perspective. Separate procurements for air vehicle, propulsion system, and avionics have contributed to the development of aircraft that are sub-optimized from a thermal management viewpoint. In order to maximize the capabilities of the aircraft for mission performance and desired growth capability, overall system efficiency and effectiveness should be considered. This document provides general information about aircraft Thermal Management System Engineering (TMSE). The document also discusses approaches to processes and methodologies for validation and verification of thermal management system engineering. Thermal integration between the air vehicle, propulsion system, and avionics can be particularly important from a thermal management standpoint. Due to these factors, this report is written to encourage the development of a more comprehensive system
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Recommended Practice (ARP) defines recommended analysis and test procedures for qualification of pneumatically, electrically, manually, and hydraulically actuated air valves. They may be further defined as valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff). Qualification testing performed on the airplane to verify compatibility of the valve function and stability as part of a complete system is outside the scope of this document. Refer to ARP1270 for design and certification requirements for cabin pressurization control system components. As this document is only a guide, it does not supersede or relieve any requirements contained in detailed Customer specifications.
AC-9 Aircraft Environmental Systems Committee
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
The durability of wheel bearings is assessed in terms of raceway life and flange life. Raceway life focuses on the performance and damage tolerance of rolling elements, while flange life evaluates the structural integrity of wheel flanges under operational stresses. Traditionally, durability predictions relied on conventional design methods and analytic formulas for raceway spalling, as well as static load assumptions for flange fatigue analysis. Recently, integrating design of experiments (DOE) with traditional approaches has enhanced these methods, enabling systematic evaluation of design variables and loading conditions. This paper introduces a methodology for analyzing raceway life and damage in automotive wheel bearings using RLDA (Road Load Data Acquisition) data. The process involves acquiring raw deterministic load data, filtering it to preserve high-peaked signals, and transforming the filtered data into block cycles derived from load time histories. Each block cycle contains
Narendra, VishwanathMane, YogirajPaua, KetanSingh, Ram KrishnanVellandi, Vikraman