Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 719

Recently Published

Browse All
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered. The integration of NBC
AC-9 Aircraft Environmental Systems Committee
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
Parking in confined spaces can be quite challenging. It is often a herculean task to align the vehicle in the parking slots where the driver has to make several attempts to park properly. One such ingenious technology that augments vehicle handling, directional controlling and overall driving agility is torque vectoring. It is becoming a pioneer in creating smarter, more responsive vehicles unlike traditional vehicles. With torque vectoring, EV’s can precisely control the torque delivered to each wheel with independent motors per wheel. In confined spaces as well by selectively distributing torque to individual wheels, it optimizes traction and vehicle control, making tasks like parking, sharp turns, and navigating narrow streets smoother and more efficiently. This paper confers about the use of torque vectoring techniques in electric vehicles for smoother and more proficient vehicles handling in tight spaces like parking, which significantly reduces driver efforts while maximizing the
Gangad, Vikas ShridharGautam, EraChaudhari, GiteshPenta, Amar
The automotive industry is advancing rapidly with the integration of cutting-edge technology, aesthetics, and performance. One area that has remained relatively underexplored in the pursuit of sleek, minimalistic interiors is the packaging of Sunshade in door trim system. Traditional sunshade design, often bulky and increasingly incompatible with the trend towards compact design and packaging. The car sunshade is a shield that is placed on a car side window and used for regulating the amount of light entering from the car window and helps improve the passenger comfort inside the cabin. Car Interior components, specifically plastic and seats are based on thermal stress properties. When we expose these parts to direct contact with sunlight, humidity and ambient temperature above threshold limit, the interior plastic parts can start to soften and melt. Due to this, they start emitting harmful chemicals which cause anemia and poor immune systems. So, the Sunshade, in addition to protecting
Palyal, NikitaD, GowthamBhaskararao, PathivadaBornare, HarshadRitesh, Kakade
This study focuses on the investigation of wheel rim failures near weld zone during repeated cornering induced by interference between the rim and disc during the wheel manufacturing assembly process. Strain gauges were employed to capture real-time stress and strain distributions at critical zones during interference fitting. The experimental results revealed that improper interference levels lead to significant stress concentrations, often surpassing the material's elastic limit, initiating micro-crack formation and promoting fatigue failure. Detailed strain analysis indicated that both radial and axial stresses contribute to long-term structural degradation. The study highlights the critical role of dimensional tolerances, surface finishes, and assembly forces in minimizing stress-induced failures. Recommendations are provided for optimizing design and assembly practices to enhance the durability and reliability of automotive wheels.
P, PraveenDEsigan, LakshmipathyK, ChandramohanC, Santhosh
The lateral and longitudinal dynamics of passenger car tyres are critical to overall vehicle safety, handling, and stability. These characteristics directly influence braking, acceleration, and cornering performance. This study investigates the impact of key input parameters, namely inflation pressure, vertical load, and inclination angle, on tyre behaviour using a dual approach: Indoor testing with a Flat-Trac CT+ (FTCT+) and Outdoor evaluation using a skid trailer. Lateral dynamics are evaluated at slip angles to analyze lateral force and aligning moment characteristics. The influence of inclination angle, pressure, and load is quantified through cornering stiffness and aligning stiffness. The tests are conducted in both sweep and steady-state modes. To maintain data consistency, all tests use tyres of a single specification sourced from the same production batch. Longitudinal behaviour of a tyre is characterized by various parameters such as peak friction coefficient, sliding
Sethumadhavan, ArjunDuryodhana, DasariTomer, AvinashGhosh, PrasenjitMukhopadhyay, Rabindra
The automotive industry is rapidly evolving with technologies such as vehicle electrification, autonomous driving, Advanced Driver Assistance Systems (ADAS), and active suspension systems. Testing and validating these technologies under India’s diverse and complex road conditions is a major challenge. Physical testing alone is often impractical due to variability in road surfaces, traffic patterns, and environmental conditions, as well as safety constraints. Virtual testing using high-fidelity digital twins of road corridors offers an effective solution for replicating real-world conditions in a controlled environment. This paper highlights the representation of Indian road corridors as digital twins in ASAM OpenDRIVE and OpenCRG formats, emphasizing the critical elements required for realistic simulation of vehicle, tire, and ADAS performance. The digital twin incorporates detailed 3D road profiles (X-Y-Z coordinates), capturing the geometry and surface variations of Indian roads. The
Joshi, Omkar PrakashShinde, VikramPawar, Prashant R
The automotive industry is undergoing a significant technological transformation, which is continually impacting the methods used to test the functionalities, delivered to end consumer. This includes the ever-growing need to embed software-based functions to support more and more end user functionality, while at the same time retaining existing and well-established functions, all within short development timelines. This presents both opportunities and challenges, with greater potential for reuse or leverage of test assets, although the actual percentage of leverage on real world projects is practically less than anticipated for a multitude of reasons. This paper collates the various factors which effect the practical leverage of test assets from one project to another, including various workflows and the interaction across components amongst applications lifecycle management systems. Alongside, it describes the current practices of basis analysis in isolation in combination with
Venkata, ParameswaranKulkarni, ApoorvaRAJARAM, SaravananGanesh, Chamarthi
With the increasing connectivity of modern vehicles, cybersecurity threats have become a critical concern. Intrusion Detection Systems (IDS) play a vital role in securing in-vehicle networks and embedded vehicle computers from malicious attacks. This presentation shares about an IDS framework designed specifically for POSIX-based operating systems used in vehicle computers, leveraging system-level monitoring, anomaly detection, and signature-based methods to identify potential security breaches. The proposed IDS integrates lightweight behavioral analysis to ensure minimal computational overhead while effectively detecting unauthorized access, privilege escalation, communication interface monitoring etc. By employing a combination of rule-based and OS datapoints, the system enhances threat detection accuracy without compromising real-time performance. Practical series deployments demonstrate the effectiveness of this approach in mitigating cyber threats in automotive environments
Shukla, SiddharthChatterjee lng, Avik
This paper contains theoretical and experimental studies of the measurement accuracies of two methods commonly used by vehicle industries and other stakeholders to determine vehicle center of gravity (CG) height. The two methods, which both appear in international standards, are the Axle Lift method and the Stable Pendulum method. The Stable Pendulum method requires a dedicated swinging platform mechanism*, but it is generally considered to be more accurate than the Axle Lift method. Both methods rely on equations for computing CG height that are based on static balance models of a vehicle tested at various pitch angles. For each method, the accuracy of the resulting CG height computations is a function of the individual measurements needed in the model equations. The individual measurements needed depend on the method used, but they include weights, angles, and distance measurements. A theoretical error analysis study is presented that provides insight into the accuracy of both
Heydinger, GaryZagorski, ScottBartholomew, MeredithAndreatta, Dale
In the development of the automotive electronic control unit (ECU), to keep performance at the desired level, what remains constant is to verify, evaluate, and validate electronic control units. Nowadays, Cars have multiple ECUs even in the range of fifty. Software is validated by a tester using a target ECU, Controller Area network (CAN) communication, and some Input/Output simulation techniques. Also, in some applications, a virtual environment is created for testing. In this paper, the method of Integration testing of Automotive Open System Architecture (AUTOSAR) modules is presented with AUTOSAR software specification as its input. This makes standard test cases as SWS remains the same for AUTOSAR standard release. It enables a platform to efficiently test all layers of AUTOSAR base software (BSW) modules after integration. For the demonstration, TriCore micro controller TC377TX from Infineon is used. Same controllers are usually used in the development of automotive ECUs for
Kelkar, RenuPatil, Vardhman
In the era of Software Defined Vehicles, the complexity and requirements of automotive systems have increased knowingly. EV Thermal management systems have become more complicated while having multiple functions and control strategies within software frameworks. This shift creates new challenges like increased development efforts and long lead time in creating an efficient thermal management system for Electric Vehicles (EV’s) due to battery charging and discharging cycles. For solving these challenges in the early stages of development makes it even more challenging due to the unavailability of key components such as fully developed ECU hardware, High voltage battery pack and the motor. To address this, a novel framework has been designed that combines virtual simulation with physical emulation at the same time, enabling the testing and validation of thermal control strategies without fully matured system and the ECU hardware. The framework uses the Speedgoat QNX machine as the
Chothave, AbhijeetS, BharathanS, AnanthGangwar, AdarshKhan, ParvejGummadi, GopakishoreKumar, Dipesh
The acquisition of road profile data is crucial for various automotive testing applications, including vehicle dynamics analysis, chassis endurance tests, and simulation of vehicle-road interactions. This is necessary for conducting virtual tests to accelerate research and development processes and can significantly reduce testing costs. However, most of the on-road measurements lack comprehensive and relevant road profile data. Conducting on-road trials to acquire this data is a laborious and time-consuming process, often impeded by logistical and environmental challenges. This research proposes a generative AI-based methodology for creating diverse and realistic road profile mixes from the existing on-road dataset of front axle displacement and road profile measured with a laser sensor. By leveraging advanced machine learning techniques, the proposed approach seeks to generate synthetic road profiles that accurately reflect real-world conditions, thereby reducing the dependency on
Rajappan, Dinesh KumarVenkatesh, Anirudh AnandR, SureshN, Gopi Kannan
The first step in designing or analyzing any structure is to understand “right” set of loads. Typically, off-road vehicles have many access doors for service or getting into cab etc. Design of these doors and their latches involve a knowledge of the loads arising when the door is shut which usually involves an impact of varying magnitudes. In scenarios of these impact events, where there is sudden change of velocity within few milliseconds, produces high magnitude of loads on structures. One common way of estimating these loads using hand calculations involves evaluating the rate-of-change-of-momentum. However, this calculation needs “duration of impact”, and it is seldom known/difficult to estimate. Failing to capture duration of impact event will change load magnitudes drastically, e.g. load gets doubled if time-of-impact gets reduced from 0.2 to 0.1 seconds and subsequently fatigue life of the components in “Door-closing-event” gets reduce by ~8 times. For these problems, structures
Valkunde, SangramGhate, AmitGagare, Kiran
The past decade has seen a systemic shift in the automotive landscape and the constituent parts of a vehicle. The automotive industry has shifted from a primarily hardware components industry to a software heavy industry, with software controlling majority of the vehicle functions. Coupled with the ability to fully update or evolve a vehicle’s capabilities or functionalities, post point of sale through software updates, the technical, commercial and service landscape of the automotive industry is rapidly changing. This has brought increasing focus to the concept of Software Defined Vehicle, where the vehicle is not only constantly evolving, but is also becoming more personalised by leveraging data collected through the life of the vehicle. This requires a rethink of the current development and deployment approaches for vehicles, which are software-intensive. In this paper, we introduce a novel four-step system engineering framework for the safe development and deployment of Software
El Badaoui, HalimaJame-Elizebeth, MariatKhastgir, SiddarthaJennings, Paul
The BioMap system represents a groundbreaking approach to collaborative mapping for autonomous vehicles, drawing inspiration from ant colony behavior and swarm intelligence. It implements a fully decentralized protocol where vehicles use virtual pheromone trails to mark areas of uncertainty, change, or importance, enabling efficient map consensus without centralized coordination. Key innovations include novel pheromone-based compression algorithms and bio-inspired consensus mechanisms that allow real-time adaptation to dynamic environments. In a simulated urban scenario (Town10HD), three vehicles achieved balanced load distribution (±1.8% variance) and comprehensive coverage of a 253.2m × 217.9m × 22.4m area. The final fused map contained 311 chunks with 72,785 particles and required only 10.4 MB of storage. Approximately 49.2% of map particles exceeded the pheromone significance threshold, indicating active importance marking, while no high-uncertainty regions remained. These results
Bhargav, Anirudh SSubbarao, Chitrashree
Asian countries capture a significant share of global two-wheeler usage, with India consistently ranking among the top three countries. 2 wheelers are a significant portion of road traffic and contribute heavily to the national burden of road fatalities. Despite regulatory mandates, helmet non-compliance remains widespread due to limited enforcement reach and behavioural inertia. The current strategies for enforcement, such as traffic policing or external camera-based surveillance, are reactive, infrastructure-dependent, are ineffective at scale. To address these limitations, we propose system that will detect if the user is wearing the helmet. The system is designed and packaged to be integrated into the 2-wheeler directly and then execute functions in real-time for helmet noncompliance. The software algorithm is an AI-powered, vision-based system that leverages deep learning techniques for helmet detection. This model is enforced with a custombuilt dataset accommodating cultural and
Kandimalla, Om MahalakshmiShah, RavindraKarle, Ujjwala
With the increasing complexity and connectivity in modern vehicles, cybersecurity has become an indispensable technology. In the era of Software-Defined Vehicles (SDVs) and Ethernet-based architectures, robust authentication between Electronic Control Units (ECUs) is critical to establish a trust. Further, the cloud connected ECUs must perform authentication with backend servers. These authentication requirements often demand multiple certificates to be provisioned within a vehicle, ensuring secure communication between various combinations of ECUs. As a result, a single ECU may end up storing multiple certificates, each serving a specific purpose. This work proposes a method to limit the number of certificates required in a given ECU without compromising security. We introduce a Cross-Intermediate Certificate Authority (Cross-ICA) Trust Architecture, which enables the use of a single certificate per ECU for inter-ECU communication as well as backend server authentication. In this
Venugopal, VaisakhGoyal, YogendraRaja J, SolomonRai, AjayRath, Sowjanya
This definitive study investigates the variation of churning losses occurring with hypoid ring and pinion gear sets and factors that determine energy dissipation in these mechanisms. An in-depth investigation confirms that viscosity is critical, particularly because of its significant temperature-dependent variations. Furthermore, the study rigorously analyzes the data's experimental parameters to examine churning losses. These losses result from the interaction between the rotating gears and the lubricating oil, contributing to notable inefficiencies in the overall drivetrain. A robust and highly effective model has been developed to address this issue comprehensively. It accounts for variable oil viscosity with temperature and integrates key empirical parameters that reflect observed behaviours in gear systems. The study employs a multidimensional approach to examine how oil density impacts hydrodynamic resistance, which is key to understanding lubricant flow under varying conditions
Khan, Aliya JavidPraveen, AbhinavKanagaraj, PothirajJain, Saurabh KumarAP, Baaheedharan
This study investigates the phenomenon of receptacle icing during Compressed Natural Gas (CNG) refueling at filling stations, attributing the issue to excessive moisture content in the gas. The research examines the underlying causes, including the Joule-Thomson effect, filter geometries, and their collective impact on flow interruptions. A comprehensive test methodology is proposed to simulate real-world conditions, evaluating various filter types, seal materials and moisture levels to understand their influence on icing and flow cessation. The findings aim to offer ideas for reducing icing problems. This will improve the reliability and safety of CNG refueling systems.
Virmani, NishantSawant, Shivraj MadhukarC R, Abhijith
Real-world usage subjects two-wheelers to complex and varying dynamic loads, necessitating early-stage durability validation to ensure robust product development. Conducting a full life-cycle durability testing on proving grounds is time-consuming, extremely difficult for the riders involved, and costly, which is why accelerated testing using rigs such as the road simulator system have become a preferred approach. The use of road simulators necessitates, accurately measured inputs and precise simulation to ensure proper actuation of the rig, thereby enabling realistic representation of road undulations. This paper covers two important aspects essential for achieving an accurate and clear representation of road simulation in a 4-DOF road simulator, encompassing both longitudinal and vertical simulations at the front and rear of the vehicle. The first aspect involves the development of an instrumentation strategy for the two-wheeler, with careful identification of directionally sensitive
Ganju, ShubhamV, VijayamirtharajPrasad, SathishR S, Mahenthran
The high-pressure steering hose in a hydraulic steering system carries pressurized hydraulic fluid from the power steering pump to the steering gear (or steering rack). Its main function is to transmit the force generated by the pump so that the hydraulic pressure assists the driver in turning the wheels more easily. The high-pressure hydraulic pipeline in the power steering system is a vital component for ensuring optimal performance. During warranty analysis, leakage incidents were observed at the customer end within the warranty period. The primary factors contributing to these failures include pipe material thickness, material composition, mechanical properties, and engine-induced vibrations. This study investigates fatigue-related failures through detailed material characterization and Computer-Aided Engineering (CAE) based on real world usage road load data collected. The objective is to identify the root causes by examining the influence of varying pipe thickness on fatigue life
Survade, LalitKoulage, Dasharath BaliramBiswas, Kaushik