Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
Overloading in vehicles, particularly trucks and city buses, poses a critical challenge in India, contributing to increased traffic accidents, economic losses, and infrastructural damage. This issue stems from excessive loads that compromise vehicle stability, reduce braking efficiency, accelerate tire wear, and heighten the risk of catastrophic failures. To address this, we propose an intelligent overloading control and warning system that integrates load-sensing technology with real-time corrective measures. The system employs precision load sensors (e.g., air below deflection monitoring via pressure sensors) to measure vehicle weight dynamically. When the load exceeds predefined thresholds, the system triggers a multi-stage response: 1 Visual/Audio Warning – Alerts the driver to take corrective action. 2 Braking Intervention – If ignored, the braking applied, immobilizing the vehicle until the load is reduced. Experimental validation involved ten iterative tests to map deflection-to
Raj, AmriteshPujari, SachinLondhe, MaheshShirke, SumeetShinde, Akshay
Global emission norms are getting very strict due to combat the harmful pollutants from internal combustion engine. Hence internal combustion engine (ICE)-based agricultural tractors need to introduce complex after-treatment systems and fuel optimization to provide same or higher value to farmers as cost of these systems drive the overall cost of the product. Engineers around the world are building Electric vehicles to combat the problem and has range issues due to design constraints & Hybrid tractors have emerged as a promising intermittent solution. It helps in combining the advantages of respective ICE and electrification solutions while reducing overall vehicle emissions and enhances operational flexibility. This paper presents a modular thermal modes system developed for a hybrid electric tractor platform where a downsized diesel engine operates at optimal efficiency DC generator used to charge the battery & DC converter is used to charge the auxiliary battery. Battery which is
K, SunilD, MariNatarajan, SaravananKumawat, Deepakrojamanikandan, ArumughamK, MalaV, SridharanMuniappan, BalakrishnanMakana, Mohan
Seats of modern cars should necessarily meet the regulatory safety norms along with aesthetics and comfort. In the existing passenger cars prevailing across the Indian subcontinent, the measure of safety has been a challenging one. The stringent regulatory norms thereby make the Airbag very promising. In the Automotive industry, safety features are very important, one of the topmost features which falls in this category is airbags. The driver and passenger safety during high impact collisions and sudden crashes is the key objective of airbag. This safety is provided by the airbag with its automatic deployment. The inflatable airbag is engineering in a way to respond very quickly during a collision and furnish necessary cushioning to decrease the impulse and enhance the safety of the passenger. The technology has been practiced widely upon many vehicles' seats. However, the present work highlights a novel approach of packaging the HPTS air bag in second row seat. This Air bag unit is
Buradkar, RajatBose, KarthikJadhav, DeepikaBalakrishnan, Gangadharan
Growing population in Indian cities has led to packed roads. People need a quick option to commute for both personal trips and business needs. The 2-3 Wheel Combination Vehicle is a new, modular solution that switches between a two-wheeler (2W) and a three-wheeler (3W). Hero has designed SURGE S32 to be a sustainable and flexible transportation option. It is world’s first class changing vehicle. The idea is to use a single vehicle for zipping through city traffic, making deliveries, or earning an income. Manufactured to deal with the challenges of modern life, this dual-battery convertible vehicle can easily transform from a two-wheeler to a three-wheeler and vice versa within three minutes. The Surge S32 is a versatile vehicle that replaces the need for multiple specialised vehicles. By lowering the number of vehicles on the road, it decreases road congestion, reduces emissions, and improves livelihoods. It powers by electricity, ensuring sustainability in all aspects. The current
Ali Khan, FerozGupta, Eshan
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
Gupta, IshanBhatnagar, AbhinavKumar, Ayush
Nowadays, digital instrument clusters and modern infotainment systems are crucial parts of cars that improve the user experience and offer vital information. It is essential to guarantee the quality and dependability of these systems, particularly in light of safety regulations such as ISO 26262. Nevertheless, current testing approaches frequently depend on manual labor, which is laborious, prone to mistakes, and challenging to scale, particularly in agile development settings. This study presents a two-phase framework that uses machine learning (ML), computer vision (CV), and image processing techniques to automate the testing of infotainment and digital cluster systems. The NVIDIA Jetson Orin Nano Developer Kit and high-resolution cameras are used in Phase 1's open loop testing setup to record visual data from infotainment and instrument cluster displays. Without requiring input from the system being tested, this phase concentrates on both static and dynamic user interface analysis
Lad, Rakesh PramodMehrotra, SoumyaMishra, Arvind
Polymer compounds used in the manufacturing of automotive interiors are traditionally consist of polymer virgin material, elastomers, additives, pigments, fillers. These compounded polymers are prone to the emission of low molecular weight chemicals over a period of usage and exposure to the environment called volatile organic compounds (VOCs) and carbonyl compounds. These released VOCs and carbonyl compounds consist of chemicals like benzene, toluene, xylene, styrene, acetaldehyde, formaldehyde, acrolein etc. Short term or long-term exposure of these chemicals have adverse health effects like nausea, headache, vomiting, cancer, even death of personnel if found beyond the permissible limits. It has been observed that the majority of passenger have the above symptoms whenever travelled using passenger cars within few minutes of boarding and exchange the car cabin air. The study was planned to understand the reasons for the concerns and further resolution. This paper is focused on the
Shukla, Sandeep KumarBalaji, K VVaratharajan, Senthilkumaran
This paper elucidates the implementation of software-controlled synchronous rectification and dead time configuration for bi-directional controlled DC motors. These motors are extensively utilized in applications such as robotics and automotive systems to prolong their operational lifespan. Synchronous rectification mitigates large current spikes in the H-bridge, reducing conduction losses and improving efficiency [1]. Dead time configuration prevents shoot-through conditions, enhancing motor efficiency and longevity. Experimental results demonstrate significant improvements in motor performance, including reduced thermal stress, decreased power consumption, and increased reliability [2]. The reduction in power consumption helps to minimize thermal stress, thereby enhancing the overall efficiency and longevity of the motor.
Patil, VinodKulkarni, MalharSoni, Asheesh Kumar
The Ro-dip Cathodic Electrodeposition (CED) process is new technology used by automotive manufacturers for higher quality corrosion protection in new generation automobiles. This process involves multiple 360-degree rotation of automotive body-in-white (BIW) which exert higher hydrostatic pressure and drag forces on large surface panels of BIW like hood. For maintaining consistent gaps and flushness control at vehicle level, it is important to safeguard the dimensional stability of light weight (crash performance sensitive) steel hood panel while undergoing through this CED process. This study investigates the enhancement of hood structure supports through strategic optimization of support rod placement and quantity within the Ro-dip CED paint shop system. This Paper underscore the importance of tailored fixture design in the Ro-dip CED process, offering a scalable solution for automotive manufacturers aiming to improve quality while reducing costs associated with dimensional
Tile, VikrantUnadkat, SiddharthAskari, HasanJadhav, Devidas
The tailgate, as the rearmost vehicle opening, plays a pivotal role in defining the rear aesthetic theme while ensuring structural durability and maximizing luggage space. Contemporary automotive design trends highlight an increasing demand for Full width tailgate-mounted tail lamp configurations, which deliver a bold and dynamic visual appeal. Enhanced by animated lighting features, these designs cater to the preferences of Gen Z customers, becoming a decisive factor in purchasing decisions. However, integrating these complex tail lamp structures introduces significant engineering challenges, including increased X-dimension lamp volume, thereby providing reduced design space, and intricate mounting schemes constrained by panel stamping limitations. These factors necessitate the development of innovative joinery strategies and structural definitions to maintain durability targets, including achieving 25,000–30,000 slam cycles without failure, while preserving luggage space. This paper
Beryl, JoshuaMohanty, AbhinabUnadkat, SiddharthSelvan, Veera
Sustainability and environmentally friendly business practices are becoming essential. Tyre industries are embracing the green initiatives to reduce its impact on the environment by exploring the eco-friendly strategies. Starting from the ethical raw material sourcing to a creative recycling technique, strategies are widely distributing in every step of tyre manufacturing to disposition. Each stage of a tyre’s life cycle viz. raw material procurement, manufacturing, transportation both upstream and downstream as well as during the end-of-life phases have an emission-saving potential. It is important to reduce emissions at every stage of tyre’s lifecycle. We have recently developed a Sustainable Tyre with 11% less GHG emission through sustainable raw material approach. Bio sourced or bio attributed raw materials like Styrene Butadiene Rubber (SBR), Polybutadiene Rubber (PBR), Rubber process oil (RPO) and Silica along with natural rubber (NR) had been used. Beside the raw materials from
Bhandary, TirthankarSingha Roy, SumitPaliwal, MukeshDasgupta, SaikatChattopadhyay, DipankarDas, MahuyaMukhopadhyay, Rabindra
There is a scarcity of research in literature regarding the determination of Plenum Opening Area of cowl box. The area of the plenum opening in the cowl box significantly affects the airflow rate in fresh airflow modes, such as face and defrost modes, as well as issues related to water ingress. Primarily, the size of the plenum opening is determined by the necessary HVAC airflow rate. This study aims to investigate how the plenum opening area impacts both airflow discharge and the water ingress issue in the HVAC module. A novel approach is introduced in this research to determine the optimal plenum opening area of the cowl box, taking into account both airflow rate and water ingress concerns. The ANSYS FLUENT software is utilized to analyze airflow discharge in both face and defrost modes, while the SPH (Smooth Particle Hydrodynamics) based Preonlab tool is employed for water ingress analysis. Airflow discharge is evaluated for various plenum opening sizes in both modes, and the area
Baskar, SubramaniyanMahesh, AGopinathan, Nagarajan
There is an increasing trend of using polymeric materials in the vehicle interior compartment. While the polymers provide benefits in terms of flexibility in profiling, lighter weight and aesthetics but one of the challenges with the polymers is emission of volatile organic compounds (VOCs) during their usage and particularly at a temperature prevailing in the vehicle cabin. VOCs adversely impact the vehicle interior air quality and can pose a risk to occupants’ health. However, there is a lack of information on volatile organic compound (VOC) emissions from automotive interior materials. There are two types of methods, a whole vehicle chamber method (ISO 12219-1) and a bag method (ISO 12219-2) for evaluation of VOCs emissions from materials used in vehicle interior parts. ISO 12219-2 method describes quantitative testing of VOCs and semi-VOCs. This test method is quick and cost effective for analysis of materials for quick emission checks and can prove to be very effective in
PAtil, Yamini JitendraThipse, SukrutBawase, Moqtik
This paper delivers a forward-looking data-driven assessment of the transformative innovation in electric vehicle motor systems with targeting breakthroughs in the power density, energy efficiency, thermal robustness, manufacturability & better intelligent control. A rigorous Multi Criteria Decision Making (MCDM) framework is done to systematically evaluate and defining the rank of emerging motor technologies across eight weighted performance indicators. The findings reveal that which design strategies & material advancements offering the greatest potential for redefine propulsion performance that enabling lighter more compact & more efficient drivetrain capable of sustained high power operation. High ranking solution exhibit strong alignment with the industry's push toward scalable, low cost & rare earth-independent systems while other are identified as high risk/high reward pathway requiring targeted research to overcome critical problems. By integrating engineering performance
Jain, GauravPremlal, PPathak, RahulGore, Pandurang
Generally, in an electric sports utility vehicle with rear mounted powertrain the mass distribution is greater in the rear compared to front. This higher rear to front weight distribution results in oversteer behavior during high-speed cornering deteriorating vehicle handling & risking passenger safety. To compensate this inherent oversteer nature of such vehicles & produce understeer behavior, the steering rack is placed frontwards of the front wheel center for toe-out behavior due to lateral compliance during cornering. This compensation measure results in lower Ackermann percentage resulting in higher turning circle diameter deteriorating vehicle maneuverability. This paper proposes a design to obtain ideal understeer gradient with minimal turning circle diameter through utilization of split link technology with a McPherson Strut based suspension framework & frontwards placed steering rack. This suspension is utilized in our Mahindra Inglo platform. This paper elaborates on how
Nadkarni, Ameya RavindraMhatre, NitijPatnala, AvinashNAYAK, Bhargav
Calibration of measuring instruments is of utmost importance in the field of metrology. It is a mandatory pre-requisite for establishing the fidelity of the measurements as well as to lend confidence. Even more critical is the requirement for the master equipment deployed to calibrate the devices in use. This entails that high accuracy needs to be guaranteed in the calibration process, and that the uncertainty be quantified precisely. The widely used conventional least squares polynomial regression formulation for load cell calibration is based on the non-normalized residual, which is the difference between the measured and master values. The nature of this formulation is such that it imparts more weightage on measured values at higher ranges resulting in good accuracy. However, there is a limitation of this same formulation that results in lesser accurate fit at lower values especially if the instrument is to be used in operation over a wide range including lower ranges of the
S Thipse, Yogesh
Cylinder Deactivation technology is explored as an effective mechanism for enhancing the fuel economy and reducing emissions in internal combustion engines. The current exercise focuses upon the feasibility of Cylinder Deactivation technology in a 3-cylinder, 3.3-liter naturally aspirated, water-cooled diesel engine from the off-highway tractor application. A meticulous 1D thermodynamic simulation with individual cylinders deactivated one by one, has proved that deactivating the second cylinder yields the most favorable fuel economy, emissions and engine balancing, particularly at the loads lower than 54% and across all engine speeds. Upon deactivating the cylinders at Top Dead Centre (TDC) and Bottom Dead Centre (BDC), it has been concluded that the most effective deactivation point occurs at TDC, where the minimum air mass is trapped inside the cylinder. This results in a reduction of pumping and friction losses by maximum 34% and an increase in brake thermal efficiency by maximum 26
Choudhary, VasuSaini, SanjayMukherjee, NaliniNene, Devendra
This paper presents an innovative in-lab accelerated testing approach for chassis-mounted components, with a particular focus on the cooling module of commercial vehicles. The proposed method simulates real-time data acquired from field operations and replicates all critical chassis modes, including torsion. Additionally, real-time coolant circulation at specified pressure and temperature maintenance are feasible during durability testing, enhancing the realism of the test environment. The cooling modules, comprising the radiator, intercooler, and charge air cooler (CAC), often experience failures due to various multi-axial inputs and chassis modes. This paper introduces an innovative methodology for replicating field conditions in the lab, utilizing seven servo-hydraulic actuators to simulate multi-axial inputs. The accuracy of in-lab simulation for the acceleration levels at input and response locations of the cooling module exceeds 90%. This makes it a preferred choice for test
V Dhage, YogeshSatale, Sunil
Driver-in-the-Loop (DIL) simulators have become crucial tools across automotive, aerospace, and maritime industries in enabling the evaluation of design concepts, testing of critical scenarios and provision of effective training in virtual environments. With the diverse applications of DIL simulators highlighting their significance in vehicle dynamics assessment, Advanced Driver Assistance Systems (ADAS) and autonomous vehicle development, testing of complex control systems is crucial for vehicle safety. By examining the current landscape of DIL simulator use cases, this paper critically focuses on Virtual Validation of ADAS algorithms by testing of repeatable scenarios and effect on driver response time through virtual stimuli of acoustic and optical warnings generated during simulation. To receive appropriate feedback from the driver, industrial grade actuators were integrated with a real-time controller, a high-performance workstation and simulation software called Virtual Test
Sharma, ChinmayaBhagat, AjinkyaKale, Jyoti GaneshKarle, Ujjwala
This study develops a one-dimensional (1D) model to enhance transmission efficiency by evaluating power losses within a transmission system. The model simulates power flow and identifies losses at various stages such as gear mesh, bearing, churning, and windage losses. Using ISO/TR 14179, which provides a method for calculating the thermal transmittable power of gear drives with an analytical heat balance model, the 1D model ensures accurate thermal capacity evaluation under standard conditions. A key advantage of this 1D model is its efficiency in saving time compared to more complex 3D modelling, making it particularly useful during the conceptual stage of transmission system development. This allows engineers to quickly assess and optimize transmission efficiency before committing to more detailed and time-consuming 3D simulations. To validate the model, experimental tests were conducted at various motor speeds (RPM) and torque values, using high-precision sensors and dynamometers
Bandi, Nagendra ReddyKolla, KalyanP, SelvandranPulugundla, Krishna ChaitanyaM A, Naveen Kumar
Rising environmental concerns and stringent emissions norms are pushing automakers to adopt more sustainable technologies. There is no single perfect solution for any market and there are solutions ranging from biofuels, green hydrogen to electric vehicles. For Indian market, especially in the passenger car segment, hybrid vehicles are favoured when it comes to manufacturers as well as with consumer because of multiple reasons such as reliability, performance, fuel efficiency and lower long-term cost of ownership. For automakers planning to upgrade their fleets in the context of upcoming CAFE III (91.7 g CO2 / km) & CAFE IV (70 g CO2/km) norms, hybridization emerges as the next natural step for passenger cars. Lately, various state governments have also promoted hybrid vehicle sales by offering certain targeted tax breaks which were previously reserved for EVs exclusively. Current study focuses on various parallel hybrid topologies for an Indian compact SUV, which is the highest
Warkhede, PawanKeizer, RubenSandhu, RoubleEmran, Ashraf
In today’s fast paced and competitive automotive market, meeting the customer’s expectation is the key to any OEM. This has led to development of downsized high performance engines with refinement as an important deliverable. However developing such high output engines do come with challenges of refinement, especially higher torsional vibrations leading to transmission noise issues. Hence, it becomes important to isolate the transmission system from these high torsional vibration input. To address this, one of the most common method is to adopt Dual Mass flywheel (DMF) as this component dampens torsional vibrations and isolates the transmission unit from the same. While Dual Mass Flywheel assemblies do great job in protecting the transmission units by not allowing the oscillations to pass through them, they do have their own natural resonance frequency band close to the engine idle (low) engine speeds, which must be avoided for a continuous operation otherwise it may lead to Dual Mass
Raiker, Rajanviswanatha, Hosur CJadhav, AashishJain, OjaseJadhav, Marisha
Robust validation of Advanced Driver Assistance Systems (ADAS) considering real-world conditions is a vital for ensuring safety. Mileage accumulation is a one of the validation method for ensuring ADAS system robustness. By subjecting systems to diverse real-world driving environments and edge-case scenarios, engineers can evaluate performance, reliability, and safety under realistic conditions. In accordance with ISO 21448 (SOTIF), known hazardous scenarios are explicitly tested during robustness validation in combination of virtual and physical testing at component, sub system and vehicle level, while unknown hazards may emerge through extended mileage by running vehicles on roads, allowing them to be identified and classified. However, defining a mileage target that ensures comprehensive safety remains a significant engineering challenge. This paper proposes a data-driven approach to define mileage accumulation targets for validating Autonomous Emergency Braking Systems (AEBS
Koralla, SivaprasadRavjani, AminTatikonda, VijayGadekar, Ganesh