Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
Identification of renewable and sustainable energy solutions remains a key focus area for the engine designers of the modern world. An avenue of research and development is being vastly dedicated to propelling engines using alternate fuels. The chemistry of these alternate fuels is in general much simpler than fossil fuels, like diesel and gasoline. One such promising and easily available alternate fuel is compressed natural gas (CNG). In this work, a 3-cylinder, 3-liter naturally aspirated air-cooled diesel engine from the off-highway tractor application is converted into a CNG Diesel Dual fuel (CNG-DDF) engine. Part throttle performance test shows the higher NMHC and CO emissions in CNG-DDF mode which have been controlled by an oxidation catalyst in C1 8-mode emission test. A comparative performance shows that the thermal efficiency is up to 2% lower with CNG-DDF with respect to diesel. However, it has shown the benefit of 44% in Particulate Matter, while retaining the same NOx
Choudhary, VasuMukherjee, NaliniKumar, SanjeevTripathi, AyushNene, Devendra
Today due to time to market requirements, Original Equipment Manufacturers (OEM) prefers platform modularity for Product Development in Automotive Domain. Money and time being main constraint we need to focus on single platform which can give flavors of different category just by changing Ride height and Tyre and some extra tunable. Taking this as challenge still tyre development for new variant demands lot of time and iterations which can lead to delays in time to market. This study provides a virtual development process using driver in loop Simulator and Multi body dynamics simulation which are real time capable and integrating physical tire models. The proposed alteration introduces ride height changes, weight distribution changes, and center of gravity changes from existing vehicle design. The proposed new vehicle variant also introduces tire change from highway terrain type to all-terrain type as it was intended to deliver some off-roading capabilities, thereby vehicle dynamics
Shrivastava, ApoorvAsthana, Shivam
With the inevitable shift of automotive industry towards E-mobility and mandatory fuel efficiency targets, there is a need to evaluate the energy losses in the vehicle & identify potential areas of improvement. Energy losses are calculated for different components in the corner module system of a passenger car. Contribution of losses (resistances) from respective component are depicted using simple analytical models. Potential energy saving improvements were identified and analyzed basis emerging technologies in respective areas.
Raghatate, Kumar ShreyasVedartham, RaghavendraKhanger, RakeshBisht, Arun
The handling of a vehicle is crucial to the perception of its dynamic characteristics, such as comfort, stability, composure, sportiness, and precision. Kinematics and Elasto-kinematics, also known as Kinematics and Compliance (K&C), form the basis of an automobile's handling characteristics. Kinematics focuses on the movement of suspension components, including wheels, axles, and linkages, and how these movements relate to the vehicle's body motion. Compliance refers to the suspension's ability to deform under load, primarily due to the flexibility of springs, bushings, and other elastic components. Elastomer bushings, as flexible elements in the kinematic chain, significantly impact K&C and require a detailed study. Suspension bush stiffness is typically measured through static and dynamic tests, in various directions – radial, axial, torsional, etc. Tests involve applying a force or torque and measuring the resulting deflection and/or rotation. These measurements are used to
Avhad, Anish
In the rapidly evolving and highly competitive automotive industry, manufacturers are under immense pressure to bring products to market quickly while meeting customer expectations. As a result, optimizing the product development timeline has become essential. Structural integrity analysis for chassis and suspension systems lies in the accurate acquisition of operational load spectra, conventionally executed through Road Load Data Acquisition (RLDA) on instrumented vehicles subjected to proving ground excitation. At this point, RLDA is mainly used for final validation and fine-tuning. If any performance shortfalls, such as premature component failure or durability issues, are discovered, they often trigger design revisions, prototype rework, and additional testing. This study proposes a Virtual Road Load Data Acquisition (vRLDA) methodology employing a high-fidelity full-vehicle multibody dynamic (MBD) representation developed in Adams Car. The system is parameterized and uses high
Goli, Naga Aswani KumarPrasad, Tej Pratap
This study presents an integrated vehicle dynamics framework combining a 12-degree-of-freedom full vehicle model with advanced control strategies to enhance both ride comfort and handling stability. Unlike simplified models, it incorporates linear and nonlinear tire characteristics to simulate real-world dynamic behavior with higher accuracy. An active roll control system using rear suspension actuators is developed to mitigate excessive body roll and yaw instability during cornering and maneuvers. A co-simulation environment is established by coupling MATLAB/Simulink-based control algorithms with high-fidelity multibody dynamics modeled in ADAMS Car, enabling precise, real-time interaction between control logic and vehicle response. The model is calibrated and validated against data from an instrumented test vehicle, ensuring practical relevance. Simulation results show significant reductions in roll angle, yaw rate deviation, and lateral acceleration, highlighting the effectiveness
Duraikannu, DineshDumpala, Gangi Reddi
Addressing the critical need for lightweight and safe energy storage solutions in electric vehicles, this paper presents the design and optimization of a novel Composite Metal Hybrid (CMH) battery pack structure. A computer aided simulation using Abaqus software was performed to optimize the weight of battery pack. The structural integrity and crashworthiness of the optimized lightweight design were rigorously evaluated under various load cases like side impact (crush), shock loading and underfloor impact. Modal analysis and load tests addressed, demonstrate the CMH battery pack as a viable and promising lightweight solution for electric vehicle applications. Manufacturing aspects are also discussed to ensure feasibility and integration.
Shah, Bijay KumarSingh, Pundan KumarG., Manikandan
Vehicles with a high center of gravity (CG) and moderate wheel track, like compact Sport Utility Vehicles (SUVs), have a relatively low Static Stability Factor (SSF) and thus are inherently less stable and more susceptible to rollover crashes. Moreover, to be more maneuverable in highly populated urban areas, a smaller Turning Circle Diameter (TCD) is necessary. Here, Variable Gear Ratio (VGR) steering systems have major benefits over traditional Constant Gear Ratio (CGR) systems in terms of enhancing both roll stability and agility. To adapt VGR steering systems to a particular vehicle dynamic, Full Vehicle (FV) and Driver-in-the-Loop (DIL) simulations are utilized. Using this method, exact calibration is possible according to realistic driving conditions so that the VGR steering C-factor curve is properly tuned for optimal handling in on-center, off-centre, and transitional areas of the Steering Wheel Angle (SWA). Primary performance measures—e.g., SWA gradients at different lateral
Rewale, PratikKopiec, JakubKumar, DevaRasal, ShraddheshHussain, InzamamNehal, S B
The evolution of electric vehicles (EVs) also demands the evolution of powertrain mounting systems to achieve superior Noise, Vibration, and Harshness (NVH) performance. This study presents a comparative evaluation of cradle, saddle and ladder mounting systems in EV applications. Examples of experimental modal analysis and vehicle-level vibration tests were performed in order to evaluate structure-borne noise transmission as well as airborne noise transfer under operating conditions. Important parameters like mount stiffness, isolation efficiency and dynamic load distribution were performed. These findings provide valuable guidance for selecting optimal mount strategies to enhance occupant comfort and acoustic quality in future EV designs. Recommendations for mount system improvements considering evolving EV architectures are also discussed. This work provides a crucial, experimentally-validated framework for selecting optimal mounting architectures, addressing a key gap in the
Hazra, Sandipmore, VishwasNaik, Sarang Pramod
Engine radiated noise has complex behavior since the diesel engine assembly comprises several components with varied dynamic speeds. The engine noise performance for the open station tractor is a crucial contributor to noise and needs to be optimized. Various engine noise sources have been researched, including structural like the engine block, intake, exhaust, and timing gears. Reducing noise in diesel powertrains by structural improvements entails limiting vibrations and preventing noise transfer from the engine. This can be accomplished by increasing the rigidity of the engine block and other structural components, as well as optimizing structural designs. Local adjustments to structural components have become a significant strategy for reducing noise and vibration problems. Design enhancements in structural components can be predicted and optimized for NVH. NVH testing helps validate changes in engine structure stiffness and assess acoustic improvements. Coupled with simulations
Kamble, PranitBaviskar, ShreyasGhale, GuruprasadChatterjee, DipankarPrabhakar, Shantanudhobale, VishwajeetBendre, ParagThakur, SunilKunde, Sagar
The US trucking industry heavily relies on the diesel powertrain, and the transition towards zero-emission vehicles, such as battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV), is happening at a slow pace. This makes it difficult for truck manufacturers to meet the Phase 3 Greenhouse Gas standards, which mandate substantial emissions reductions across commercial vehicle classes beginning of 2027. This challenging situation compels manufacturers to further optimize the powertrain to meet stringent emissions requirements, which might not account for customer application specifics may not translate to a better total cost of ownership (TCO) for the customer. This study uses a simulation-based approach to connect customer applications and regulatory categories across various sectors. The goal is to develop a methodology that helps identify the overlap between optimizing for customer applications vs optimizing to meet regulations. To use a data-driven approach, a real
Mohan, VigneshDarzi, Mahdi
There is continuous push from the legislation for stringent fuel economy and emission regulations while the modern customers are demanding more engaging driving experience in terms of performance and refinement. To meet this Tata Motors has developed an advanced 1.2L 3-cylinder turbocharged gasoline direct injection engine. This next-generation powertrain delivers optimum efficiency, reduced emissions, superior performance with refined NVH characteristics. The key features used to enable these demanding requirements includes a 35 MPa fuel injection system, Miller Cycle operation and electrically actuated variable nozzel turbocharger (VNT). A uniquely designed BSVI complaint (WLTP ready) exhaust after-treatment system with Four-Way Conversion Catalyst (FWC+TM) ensures optimum emission control. A centrally mounted variable cam phaser minimizes pumping losses. The lightweight yet rigid all-aluminum engine structure, featuring an integrated structural oil sump, enhances durability and
Hosur, ViswanathaGhadge, Ganesh NarayanJoshi, ManojJadhav, AashishPanwar, Anupam
Accidents during lane changes are increasingly becoming a problem due to various human based and environment-based factors. Reckless driving, fatigue, bad weather are just some of these factors. This research introduces an innovative algorithm for estimating crash risk during lane changes, including the Extended Lane Change Risk Index (ELCRI). Unlike existing studies and algorithms that mainly address rear-end collisions, this algorithm incorporates exposure time risk and anticipated crash severity risk using fault tree analysis (FTA). The risks are merged to find the ELCRI and used in real time applications for lane change assist to predict if lane change is safe or not. The algorithm defines zones of interest within the current and target lanes, monitored by sensors attached to the vehicle. These sensors dynamically detect relevant objects based on their trajectories, continuously and dynamically calculating the ELCRI to assess collision risk during lane changes. Additionally
Dharmadhikari, MithilS, MrudulaNair, NikhilMalagi, GangadharPaun, CristinBrown, LowellKorsness, Thomas
This paper presents a novel structural solution for side impact protection of high-voltage battery packs in electric trucks. While electric vehicles offer benefits like zero emissions and independence from fossil fuels, in turn present challenges in meeting crashworthiness standards and safety regulations. The device addresses the critical need for effective battery protection & styling of battery electric vehicles. The integration of a hybrid corrugated panel system with plastic side fairings is innovative, combining crashworthiness with aerodynamic and aesthetic benefits. The crash protection features two hat-section steel channels at the top and bottom and corrugated steel sheet with alternating ridges is attached to these channels. Corrugated panels are enforced with help of backing strips. This assembly is mounted on shear plates at both ends, secured to the vehicle's frame rail. During a side impact event, the plastic side fairings absorb the initial impact, crumpling easily. If
Badgujar, PrathameshDevendra, AwachareHansen, Benjamin
Diesel powertrains are inherently characterized by high vibration levels and low-frequency excitations, which are extremely demanding for passenger comfort and vehicle refinement. Conventional passive engine mounts often fall short in mitigating such vibrations effectively across a wide range of operating conditions. Passive mounts are inadequate for effectively isolating vibrations in powerful, lightweight vehicles or those without a balancer shaft 3-cylinder engine ordiesel engines. Consequently, this has prompted the consideration of active engine mounts as an alternative solution for solving NVH (Noise, Vibration, Harshness)-related issues. This paper explores the application of adaptive control algorithms in active engine mount systems for diesel powertrains in passenger vehicles. Through the integration of real-time feedback loops with smart control strategies the system adaptively controls mount stiffness and damping to minimize engine-induced vibrations. The study presents
Hazra, SandipKhan, Arkadip Amitavamore, Vishwas
Virtual Reality technology is emerging as a transformative solution in the manufacturing industry. It offers significant advantages over traditional tools like Tecnomatix Process Simulate in assembly & ergonomic simulations. Analysis using PS is time-consuming and lacks real-time human interaction as it relies on detailed modelling and sequential workflows, which will delay the identification of assembly no-build conditions and ergonomic issues. This paper evaluates the time and the cost-saving potential of VR in assembly processes and explores its role in minimizing the need for physical prototypes across various stages of vehicle development. VR provides interactive environments, enabling interaction with 3D models and real-time collaboration with various teams across the globe. This leads to faster identification of assembly process flaws, quicker iteration cycles, and a reduced need for physical prototypes in the station development process for the lines. VR allows individuals to
Nagendran, Rakesh Kumar
This study addresses one of the challenges in the energy transition of heavy-duty vehicles by converting a diesel Refuse Collection Vehicle (RCV) into a hydrogen-powered prototype. The research is part of the VeH2Dem project funded by NextGenerationEU and focuses on dimensioning the complete hydrogen propulsion system for a RCV, including the energy storage capacity, without compromising payload or operational functionality. The development of the propulsion system is based on a comprehensive analysis of operational data extracted from fleet management systems, complemented by detailed instrumental monitoring of various collection routes. This methodology ensured that the prototype inherits performance equivalent to the original internal combustion engine vehicle across all evaluated scenarios. The vehicle performance objectives were established following a comparative analysis with solutions currently available in the RCV market, incorporating statistical analyses to ensure continuous
Cano, PabloBarrio, RobertoRoche, Marinade-Lima, DanielaBatista, SaraBertolí, Xavier
Battery Electric Vehicles (BEVs) necessitate highly efficient thermal management strategies, as cabin heating directly consumes energy from the finite traction battery, potentially reducing driving range significantly. Early-stage design evaluations of warmup performance commonly rely on one-dimensional (1D) simulations due to their computational speed and efficiency. The accuracy and predictive capability of these models are critically dependent on how well they represent blower operation and account for temperature-induced variations in air density. This fidelity is essential because engineers depend on warmup simulations to set HVAC targets that will deliver real-world comfort and defrost performance within stringent range constraints. Earlier, warmup simulations employed a Constant Mass Flow (CMF) approach, which simplifies computations by assuming a fixed air density at a standard reference temperature. However, this approach contrasts with real-world blower behavior, where
Subramanian, Karthik
Side crashes are generally hazardous because there is no room for large deformation to protect an occupant from the crash forces. A crucial point in side impacts is the rapid intrusion of the side structure into the passenger compartment which need sufficient space between occupants and door trim to enable a proper unfolding of the side airbag. This problem can be alleviated by using the rising air pressure inside the door as an additional input for crash sensing. With improvements in the crash sensor technology, pressure sensors that detect pressure changes in door cavities have been developed recently for vehicle crash safety applications. The crash pulses recorded by the acceleration based crash sensors usually exhibit high frequency and noisy responses. The data obtained from the pressure sensors exhibit lower frequency and less noisy responses. Due to its ability to discriminate crash severities and allow the restraint devices to deploy earlier, the pressure sensor technology has
Bhagat, MilindNarale, NaganathMahajan, AshutoshWayal, VirendraJadhav, Swapnil
With the rapid adoption of electric vehicles (EVs), ensuring the structural integrity and thermal safety of lithium-ion battery has become a critical priority. Battery failures resulting from mechanical abuse, thermal stress, internal pressure build up or electrical faults may lead to structural failure. To address these challenges, it is essential to understand the coupled thermal and mechanical responses of battery structure under extreme conditions. Thermo-mechanical simulation serves as a powerful tool for predictive safety assessment and design optimization, particularly in addressing thermal propagation and pressure-induced failure events. This study presents a comprehensive coupled thermo-mechanical simulation framework designed to evaluate the structural performance of EV battery enclosures under worst-case thermal and overpressure conditions. The methodology involves high-fidelity three-dimensional modeling of the battery pack enclosure, incorporating realistic material
Bhat, Sadashiv CSugumar, Mohanraj
With increased deterioration of road conditions worldwide, automotive OEMs face significant challenges in ensuring the durability of structural components. The tyre being the primary point of contact with the road is expected to endure harshest of impacts while maintaining the other performance functions such as Ride & Handling, Rolling resistance, Braking. Thus, it is considered as the most challenging component in terms of design optimization for durability. The current development method relies on physical testing of initial samples, followed by iterative construction changes to meet durability requirements, often giving trade-off in Ride & Handling performance. To overcome these challenges, a frugal simulation-based methodology has been developed for predicting tyre curb impact durability before vehicle-level testing so that corrective action can be taken during the design stage.
Sundaramoorthy, RagasruobanLenka, Visweswara
This study presents a comprehensive 1D simulation approach of an automotive solenoid-based diesel fuel injector and a common rail injection system for a marine engine using Simcenter AMESim. The injector model was developed to analyse the injection rate and total injected fuel at various solenoid actuation durations (1.2 ms and 2.0 ms) and common rail pressures. The experimental results from a well-established research study are used for validating the simulation results of the solenoid-based injector. Overall error in total fuel injected ranges from -6.14 percent to 1.93 percent, while timing errors for the start of injection vary from 1.7° crank angle (CA) to 0.08° CA and the end of injection from 2.8° CA to 0.20° CA at 1200 rpm demonstrating strong agreement at higher rail pressures (above 1000 bar) and solenoid actuation times. Building on this validated injector model, a detailed marine common rail system was developed incorporating key hydraulic components: a check valve to
Bhoware, YashPise, UdaySaha, DiptaGaikwad, Nilesh
This study focuses on enhancing energy efficiency in electric vehicle (EV) thermal management systems through the development and optimization of control logic. A full vehicle thermal management system (VTMS) was modeled using GT-Suite software, incorporating subsystems such as the high voltage battery (HVB), Electric powertrain (EPT), and an 8-zone cabin. Thermal models were validated with experimental data to ensure accurate representation of key dynamics, including coolant to cell heat transfer, cell-to-ambient heat dissipation, and internal heat generation. Control strategies were devised for Active Grille Shutter (AGS) and radiator fan operations, targeting both cabin cooling and EPT thermal regulation. Energy consumption was optimized by balancing aerodynamic drag, fan power, and compressor power across various driving conditions. A novel series cooling logic was also developed to improve HVB thermal management during mild ambient conditions. Simulation results demonstrate
Chothave, AbhijeetKumar, DipeshGummadi, GopakishoreKhan, ParvejThiyagarajan, RajeshPandey, RishabhS, AnanthAnugu, AnilMulamalla, SarveshwarGangwar, Adarsh