Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
High power and torque density electric motor is finding increasing demands in modern-day electric and hybrid vehicles because of compact and light-weight designs. These high-performance requirements are achieved by increasing the current flow, strengthening the magnetic field as well as downsizing the motor dimensions and hence can lead to multiple failure modes if not designed properly. Higher current flow results in increased magnitude of losses within the motor components such as ohmic loss, iron loss, hysteresis loss and mechanical losses. All these localized losses contribute to higher operating temperature and temperature gradient that can act as a catalyst to several modes of failure. Hence, accurate prediction of temperature distribution across the motor components is very crucial to come up with a robust and durable motor design. A common approach of predicting component temperature is by assuming bulk losses for lamination stack, hairpin and magnets. This approach might be
Munshi, Irshad AhmedElango, GokulKarmakar, NilankanPrasad, Praveen
Real-world crashes involve diverse occupants, but traditional restraint systems are designed for a limited range of body types considering the applicable regulations and protocols. While conventional restraints are effective for homogeneous occupant profiles, these systems often underperform in real-world scenarios with diverse demographics, including variations in age, gender, and body morphology. This study addresses this critical gap by evaluating adaptive restraint systems aligned with the forthcoming EURO NCAP 2026 protocols, which emphasize real-world crash diversity and occupant type. Through digital studies of frontal impact scenarios, we analyze biomechanical responses using adaptive restraints across varied occupant demographics, focusing on head and chest injury (e.g., Chest Compression Criterion [CC]). This study used a Design of Experiments (DOE) approach to optimize occupant protection by timing the actuating of these adaptive systems. The results indicate that activating
satija, AnshulSuryawanshi, YuvrajChavan, AvinashRao, Guruprakash
This study introduces a novel in-cabin health monitoring system leveraging Ultra-Wideband (UWB) radar technology for real-time, contactless detection of occupants' vital signs within automotive environments. By capturing micro-movements associated with cardiac and respiratory activities, the system enables continuous monitoring without physical contact, addressing the need for unobtrusive vehicle health assessment. The system architecture integrates edge computing capabilities within the vehicle's head unit, facilitating immediate data processing and reducing latency. Processed data is securely transmitted via HTTPS to a cloud-based backend through an API Gateway, which orchestrates data validation and routing to a machine learning pipeline. This pipeline employs supervised classifiers, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF) to analyze features such as temporal heartbeat variability, respiration rate stability, and heart rate. Empirical
Singh, SamagraPandya, KavitaJituri, Keerti
The number of female drivers in India is increasing alongside the rapid growth of the Indian automotive industry. A driving comfort survey conducted among female drivers revealed that many of them experienced discomfort when wearing safety belts—while driving and as front-seat passengers. This discomfort is primarily due to a phenomenon referred to as “neck cutting.” The root cause of neck cutting is likely related to vehicle design, which is traditionally based on Anthropometric Test Devices (ATD’s) representing the 5th, 50th & 95th percentile (%tile) of the global population. However, a literature review indicated that the anthropometric dimensions of the Indian populations are generally smaller than those of the global for the respective candidate. To validate the neck-cutting issue, various female candidates were asked to sit in the Driver’s seat for physical measurements trials. Accordingly, methodology was developed to quantify neck cutting parameters objectively. A correlation
Kulkarni, Nachiket AChitodkar, Vivek VEknath Chopade, SantoshMahajan, RahulYamgar, Babasaheb S
The safety of vulnerable road users, particularly pedestrians, cyclists, and motorcyclists, is a paramount concern in automotive design and regulation. In India, the situation is particularly alarming, with pedestrians being the second highest victims of road accidents, as evidenced by over 32,825 reported pedestrian accidents and 4,836 cyclist fatalities in 2022, excluding two-wheeler motorcyclists. On a global scale, the prevalence of such incidents has prompted European countries to introduce new regulatory requirements, such as ECE R127.03. This regulation encompasses the evaluation of pedestrian head form impacts on windshields, assessing the typical behavior of glass through jerk criteria following initial contact, in conjunction with the existing Head Injury Criterion (HIC) evaluation for pedestrian head forms. These criteria’s are meticulously designed to ensure that both acceleration and jerk remain within safe limits to reduce the severe risk of severe injury to head of
Kumar, RitikA, Rajesh
As vehicles are becoming more complex, maintaining the effectiveness of safety critical systems like adaptive cruise control, lane keep assist, electronic breaking and airbag deployment extends far beyond the initial design and manufacturing. In the automotive industry these safety systems must perform reliably over the years under varying environmental conditions. This paper examines the critical role of periodic maintenance in sustaining the long-term safety and functional integrity of these systems throughout the lifecycle. As per the latest data from the Ministry of Road Transport and Highways (MoRTH), in 2022, India reported a total of 4.61 lakh road accidents, resulting in 1.68 lakh fatalities and 4.43 lakh injuries. The number of fatalities could have been reduced by the intervention of periodic services and monitoring the health of safety critical systems. While periodic maintenance has contributed to long term safety of the vehicles, there are a lot of vehicles on the road
HN, Sufiyan AhmedKhan, FurqanSrinivas, Dheeraj
The handling of a vehicle is crucial to the perception of its dynamic characteristics, such as comfort, stability, composure, sportiness, and precision. Kinematics and Elasto-kinematics, also known as Kinematics and Compliance (K&C), form the basis of an automobile's handling characteristics. Kinematics focuses on the movement of suspension components, including wheels, axles, and linkages, and how these movements relate to the vehicle's body motion. Compliance refers to the suspension's ability to deform under load, primarily due to the flexibility of springs, bushings, and other elastic components. Elastomer bushings, as flexible elements in the kinematic chain, significantly impact K&C and require a detailed study. Suspension bush stiffness is typically measured through static and dynamic tests, in various directions – radial, axial, torsional, etc. Tests involve applying a force or torque and measuring the resulting deflection and/or rotation. These measurements are used to
Avhad, Anish
Vehicle dynamics is a vital area of automotive engineering that focuses on analyzing how a vehicle responds to driver inputs and external factors like road conditions and environmental influences. Achieving optimal performance, safety, and ride comfort requires a detailed understanding of longitudinal, lateral, and vertical dynamic behavior. The objective of this paper is to develop and validate the model of a concept Race car and evaluate its vehicle dynamics behavior using IPG CarMaker, a high-fidelity virtual testing environment widely used in industry. The model incorporates a range of vehicle parameters, including suspension parameters like spring and damper characteristics, mass distribution, tire properties and powertrain parameters. The performance evaluation is done as per standard guidelines, including Constant Radius turn test, Sine Steer test and other standard tests like Acceleration, Braking along with Ride and Comfort classification. The key parameters that are
Agrewale, Mohammad Rafiq B.Vaish, Ujjwal
There is continuous push from the legislation for stringent fuel economy and emission regulations while the modern customers are demanding more engaging driving experience in terms of performance and refinement. To meet this Tata Motors has developed an advanced 1.2L 3-cylinder turbocharged gasoline direct injection engine. This next-generation powertrain delivers optimum efficiency, reduced emissions, superior performance with refined NVH characteristics. The key features used to enable these demanding requirements includes a 35 MPa fuel injection system, Miller Cycle operation and electrically actuated variable nozzel turbocharger (VNT). A uniquely designed BSVI complaint (WLTP ready) exhaust after-treatment system with Four-Way Conversion Catalyst (FWC+TM) ensures optimum emission control. A centrally mounted variable cam phaser minimizes pumping losses. The lightweight yet rigid all-aluminum engine structure, featuring an integrated structural oil sump, enhances durability and
Hosur, ViswanathaGhadge, Ganesh NarayanJoshi, ManojJadhav, AashishPanwar, Anupam
Advanced Driver Assistance Systems (ADAS) have become increasingly prevalent in modern vehicles, promising improved safety and reducing accidents. However, their implementation comes with several challenges and limitations. The efficacy of these systems in diverse and challenging road conditions of India, remains as a concern. For deeper understanding of the ADAS feature related concerns in Indian market due to the factors such as unique road conditions, traffic situations, driving patterns, an extensive study was done throughout Indian terrain. The functionality and performance of different ADAS features were evaluated in the real-world scenarios. The objective data of the observations and occurrence conditions were captured with help of data loggers & camera setups inside the vehicle. This research paper represents a comprehensive study on the challenges faced by user while using ADAS enabled cars in Indian road conditions. We captured the performance data of various ADAS features
Kumbhar, Prasad UttamPyasi, Praveen
Sunroof-equipped vehicles are gaining rapid popularity in India, especially among young and urban users. However, unsafe practices like occupants protruding through the sunroof during driving have led to increasing injuries and fatalities, particularly in sudden braking or collisions. This behavior, prohibited under the Motor Vehicles Act, remains an overlooked safety risk in today’s vehicles. This paper presents an industry-first innovation: an Automated Safety Alarm and Speed Control System designed to detect and prevent sunroof misuse. Using integrated photoelectric and infrared beam sensors, the system detects human extension beyond the sunroof boundary while the vehicle is in motion. Upon detection, it triggers a tiered safety response: an immediate dashboard warning, an audible alert if vehicle speed exceeds 15 km/h and an active speed limiter that restricts vehicle speed to 20 km/h until safe conditions are restored. This marks a shift from passive warnings to active vehicle
Padmanapan, GopiYadav, Sanjeev
Mass Mobility Systems are critical for a sustainable and progressive society. As the world confronts the serious challenges of global warming and urban traffic congestion, efficient mass mobility solutions become critical in reducing carbon footprints and enabling equitable access. Advancement in mass mobility is not limited to electric buses alone but also includes innovations across conventional ICE vehicles, autonomous vehicles, trains, and other integrated transport networks. Safety and accessibility for users remain critical to the sustainability of future mass mobility concepts. The COVID-19 pandemic exposed vulnerabilities in public transportation, highlighting the urgent need for safer and more resilient systems. Road safety, passenger well-being, and hygienic standards must be deeply embedded into future mobility solutions. Furthermore, strong last-mile connectivity will be essential to ensure that mass mobility truly meets the needs of all citizens. An effective Mass Mobility
Vasudevan, MKumar S, AshokSridevi, MKumar, RajivKumar, Om
Vehicle door-related accidents, especially in urban environments, pose a significant safety risk to pedestrians, infrastructure and vehicle occupants. Conventional rear view systems fails to detect obstacles in blind spots directly below the Outside Rear View Mirror (ORVM), leading to unintended collisions during door opening. This paper presents a novel vision-based obstacle detection system integrated into the ORVM assembly. It utilizes the monocular camera and a projection-based reference image technique. The system captures real-time images of the ground surface near the door and compares them with calibrated reference projections to detect deviations caused by obstacles such as pavements, potholes or curbs. Once such an obstacle is detected the vehicle user is alerted in the form of a chime.
Bhuyan, AnuragKhandekar, DhirajJahagirdar, Shweta
Functional Mock-up Units (FMUs) have become a standard for enabling co-simulation and model exchange in vehicle development. However, traditional FMUs derived from physics-based models can be computationally intensive, especially in scenarios requiring real-time performance. This paper presents a Python-based approach for developing a Neural Network (NN) based FMU using deep learning techniques, aimed at accelerating vehicle simulation while ensuring high fidelity. The neural network was trained on vehicle simulation data and trained using Python frameworks such as TensorFlow. The trained model was then exported into FMU, enabling seamless integration with FMI-compliant platforms. The NN FMU replicates the thermal behavior of a vehicle with high accuracy while offering a significant reduction in computational load. Benchmark comparisons with a physical thermal model demonstrate that the proposed solution provides both efficiency and reliability across various driving conditions. The
Srinivasan, RangarajanAshok Bharde, PoojaMhetras, MayurChehire, Marc
With the rise of EVs, researchers are focusing on optimizing busbar design to meet the demands of high energy density, fast charging, and compact battery packs. The busbar design starts by selecting the material and the cross-sectional area required based on the rated current requirement. The width matches or may exceed the battery cell terminal size, whereas the length is optimized such that it is packaged within the given space constraints. The research also highlights the risk of busbars to oxidation and corrosion, which increases resistance and decreases conductivity for which plating/coating techniques are applied to improve the surface finish, overall durability, conductivity and in some cases the surface hardness, while minimizing the heat loss. Using simulations and experimental validation, the study examines three key design parameters: the weld diameter for busbar welded joints, electrical resistance, and contact resistance. A detailed analysis investigates how the weld
Nogdhe, YogeshSingh, Shobit KumarPaul, JibinMishra, MukeshMenon, Praveen
This paper presents the design, simulation, and evaluation of a low-profile Multiple-Input Multiple-Output (MIMO) antenna configuration, optimized to meet the evolving demands of modernized wireless communication systems, incorporating LTE-Advanced (LTE-A) and emerging 5G Internet of Things (5G-IoT) applications. The antenna’s geometry relies on a novel design comprising staircase-shaped rectangular radiating patches with an integrated stub. This configuration is employed to improve impedance bandwidth and strengthen the isolation between antenna components, which are critical parameters in MIMO system performance. The antenna is fabricated on a Rogers RT/Duroid 5880 substrate, distinguished by its low dielectric loss and high-frequency stability. With a compact physical footprint of 96 × 96 mm2, the proposed design effectively serves the feature of integration into portable and space-constrained wireless devices. The antenna operates effectively across frequency range of 2.13 GHz to
Gupta, ParulPrasad, Anjay
Over the last few years, notable progress has occurred in electric vehicle (EV) technology. Inverters are key components for electric vehicles (EV). Various PWM strategies have been implemented by OEMs over past years. For most of PWM scheme timing calculation & Lengthy algorithm increases complexity. The proposed a novel Pulse Width Modulation (PWM) control technique for generating inverter lag switching times in multi-level inverters. The proposed Space Vector PWM (SVPWM) method eliminates the need for sector and region identification by utilizing sampled values of reference phase voltages, thereby reducing computational efforts and complexities. The scheme can generate N-level PWM signals and offers flexibility to operate with fewer levels, including operation in the overmodulation range. The sampled magnitudes reference phase voltages are converted into timing signals that are subsequently processed by an algorithm to modify modulating signals. These modulating signals are
Bhanabhagvanwala, Prem Kiritkumar
Perceived quality (PQ) is one of the most important factors in engineering signoff as well as customer delight and product improvement (feel, look & touch). The PQ is something related to feel of product in terms of gap, flushness, fitment and appearance as per the costumer perceptions and expectations. Validation of design and engineering quality with respect to perceived quality is required for overall product appearance in the eyes of prospective customers. This is equally applicable in today’s automotive bus industry along with the other customer oriented industry. In this paper we have explored the dimensional management scope in improving the PQ requirements and expectations by utilizing the dimensional variation analysis (DVA) approach. We have tried to explain the fundamentals of vehicle aggregates fitment process and impact of fitment tolerances as used in DVA model to resolve vehicle packaging issues (critical gaps & clearance variation as per expected no. of vehicles to be
Singh, Vinay KumarDewangan, Ved PrakashKumar, RahulDeep, Amar
Internal Combustion Engine (ICE) is the heart of an Automobile. The failure of any critical component of the ICE engine will directly affect the performance of the vehicle. The gaskets are among the many vital parts of an IC engine that are essential in ensuring appropriate sealing to prevent gas and liquid leakage and maintain optimal engine efficiency. Engines use a variety of gasket types to accommodate various sealing requirements. Among them the exhaust manifold gaskets are one of the critical gasket elements in ICE engines. Exhaust Gasket acts as a seal between cylinder head and extremely hot exhaust manifold, which prevents the leakage of hot exhaust gases produced during typical engine operating condition. The gaskets are crucial components because they endure extremely high mechanical loads from the exhaust manifold sliding and banana-shaped bending brought on by thermal expansion, as well as extremely high thermal loads from the high exhaust gas temperatures, which are more
Reddy, RajavardhanR B, GovindKulkarni, SanjeevPalve, ChandrakantMueller, Frank Oliver
Thermo-mechanical fatigue (TMF) is a critical durability concern for cylinder heads in internal combustion engines, particularly under severe cyclic thermal and mechanical loads. TMF-induced damage often initiates in geometrically constrained regions with high thermal gradients and can significantly reduce component life. As performance demands increase, understanding and mitigating TMF becomes essential to ensure the structural integrity and long-term reliability of engine components. This study presents a simulation methodology for evaluating thermo-mechanical fatigue (TMF), a temperature-dependent low-cycle fatigue (LCF) mechanism that arises from repeated thermal expansion and contraction under mechanical constraints, leading to cyclic plastic deformation and damage. The methodology consists of two key phases. Phase I involves global finite element (FE) simulations both thermal and structural to obtain temperature and displacement fields under rated and idle engine conditions
Ghotekar, SunilKumbhar, Dipak MadhukarPendse, Ameya
In electric and hybrid vehicles, sound package optimization can follow a classical, proven, and structured approach for real-world loads, while also considering new transmission paths that might differ from those in traditional internal combustion engine vehicles. However, AVAS-induced interior noise is sometimes underestimated and therefore not taken into account during the optimization process. Nevertheless, especially at very low speeds, the presence of the AVAS can be perceived as unwanted noise inside the vehicle, potentially compromising interior comfort. In this study, a hybrid boundary element–statistical energy analysis (BEM – SEA) approach is applied to an SEA dual-motor electric vehicle demonstrator model equipped with a baseline, standard sound package to assess AVAS-induced interior noise. A standard AVAS actuator is modeled with a BEM model to compute the sound pressure levels on the exterior subsystems of the vehicle. These results are then transferred to the SEA model
Fiedler, RobertCalloni, MassimilianoMartin, Simon
Higher road noise is perceived in the cabin when the test vehicle encounters road irregularities like bump or pothole in the public roads. The transfer of transient road inputs inside the body caused objectionable cabin noise. Measurements are conducted at different road surfaces to identify the patch where the objective data well correlated with the noise measured at the public road. Wavelet analysis is carried out to identify the frequency zones since the events are transient in nature. TPA is carried out in time domain to identify the nature of the noise and the dominant path through which the transient road forces are transferring inside the body. Based on the outcome of TPA, various countermeasures like reduction of dynamic stiffness of suspension bushes, TMDs on the path are proposed to reduce the structure borne noise. Criteria which need to be considered for reduction of cabin noise due to transient road inputs is also discussed.
S, Nataraja MoorthyRao, ManchiSelvam, EbinezerRaghavendran, Prasath
Nowadays, Printed Circuit Board (PCB) design is facing critical challenges like high heat dissipation, increased cost, densely populated components and reduced life span. In view of the above, present study is focused on temperature prediction, thermal management, and optimization of component allocation (e.g. mosfet) in PCB. Heat flow occurring from traces to different copper layers in the PCB can cause adverse effects such as thermal run away/PCB warpage. Here, transient thermal analysis is carried out in an in-house developed PCB which is placed inside a sheet metal enclosure. Initially, thermal prediction to explore thermal regimes in the PCB is performed with the help of a commercially available software Altair Simlab ElectroFlo 2024.1. Temperature across all the components of the PCB as well as at the enclosure is simulated which is found to be beneficial in identifying the critical hotspots. In addition to the above, thermal measurements are performed in the lab with the help of
Rajasekharan, JayakrishnanML, SankarPrasad, Suryanarayana