Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
During parking conditions of vehicles, the state of the battery is uncertain as it goes through the relaxation process. In such scenarios, the battery voltage may exceed the functional safety limits. If we cross the functional safety limits, it is hazardous to the driver as well as the occupant. In this case, relaxed voltage plays a crucial role in identifying the safe state of the battery. To estimate the relaxed cell voltage there are methods such as RC filter time constat modeling and relaxation voltage error method. The problem with these solutions is the waiting time and accuracy to determine the relaxation voltage. In this manuscript, a solution is proposed which ensures the above problem is reduced. To achieve the reduction of relaxation voltage estimation time, a python sparse identification of nonlinear dynamics (PySindy) is used which identifies and fits an equation model based on observing the battery characteristics at different SOC and temperatures. The implementation is
Pandey, PriyanshuNilajkar, AnkurPanda, Abinash
The world is moving towards data driven evolution with wide usage tools & techniques like Artificial Intelligence, Machine Learning, Digital Twin, Cloud Computing etc. In automotive sector, the large amount of data being generated through physical and digital test evaluations. Computer-Aided Engineering (CAE) is one of the highest contributors for data generation as physical testing involves high cost due to prototypes & test set-up. The Automotive Noise, Vibration & Harshness (NVH) field is advancing exponentially due to new stringent regulatory norms & customer preferences towards comfort, where digitally advanced techniques are playing a key role in the revolution of NVH. Data generation through CAE tool is a crucial aspect of Engineer’s daily activities and selecting such appropriate CAE software and solvers is critical, as it influences user interface experience, accuracy, solution time, hardware requirements, variability expertise, Design of Experiments ability, and integration
Hipparge, VinodMasurkar, NikitaArabale, VinandBillade, Dayanand
Growing population in Indian cities has led to packed roads. People need a quick option to commute for both personal trips and business needs. The 2-3 Wheel Combination Vehicle is a new, modular solution that switches between a two-wheeler (2W) and a three-wheeler (3W). Hero has designed SURGE S32 to be a sustainable and flexible transportation option. It is world’s first class changing vehicle. The idea is to use a single vehicle for zipping through city traffic, making deliveries, or earning an income. Manufactured to deal with the challenges of modern life, this dual-battery convertible vehicle can easily transform from a two-wheeler to a three-wheeler and vice versa within three minutes. The Surge S32 is a versatile vehicle that replaces the need for multiple specialised vehicles. By lowering the number of vehicles on the road, it decreases road congestion, reduces emissions, and improves livelihoods. It powers by electricity, ensuring sustainability in all aspects. The current
Ali Khan, FerozGupta, Eshan
The transition to electric vehicles (EVs) has brought about significant advancements in automotive technology, with inverters playing a crucial role in converting DC power from the battery to AC power for the electric motor. Ensuring the functional safety of these inverters is paramount, as any failure can have severe implications for vehicle performance and passenger safety. This case study explores the successful implementation of ISO 26262 standards in the development and validation of EV traction inverters. This paper begins by outlining the functional requirements and safety goals specific to EV inverters, followed by a detailed analysis of the potential hazards and risks associated with their operation. Using ISO 26262 as a framework, we describe the systematic approach taken to identify, assess, and mitigate these risks. Key methodologies such as Hazard Analysis and Risk Assessment (HARA), Failure Mode and Effects Analysis (FMEA), and Fault Tree Analysis (FTA) are employed to
Ramachandra, ShwethaV, Sushmitha
In era of Software Defined Vehicle (SDV), the whole ecosystem of automobile will be impacted. So, it is going to through several challenges for testing activities. In electric vehicle, most critical component is traction battery, which is controlled and operated through battery management system (BMS). BMS is an electronic system, where is going to function as per software of BMS. And in SDV, software is a key element, which is continuously keep on updating on regular basis. So, it means some of BMS functionalities, features or performance may be also altered on each time on software update, which may impact battery’s operating condition, if some scenario is not evaluated during earlier testing then there are it may bring battery out of safe operating area, which may significant impact battery safety, performance or cycle-life. In this paper, we are exploring that different testing requirements for EV Batteries, which may be part of testing practices under era of SDV. Here we will
Bhateshvar, Yogesh KrishanMulay, Abhijit B
For regions with cold climate, the range of an electric bus becomes a serious restriction to expanding the use of this type of transport. Increased energy consumption affects not only the autonomous driving range, but also the service life of the batteries, the schedule delays and the load on the charging infrastructure. The aim of the presented research is to experimentally and computationally determine the energy consumption for heating the driver's cabin and passenger compartment of an electric bus during the autumn-winter operation period, as well as to identify and analyze ways to reduce this energy consumption. To determine the air temperature in the passenger compartment, a mathematical model based on heat balance equations was used. This model was validated using data from real-world tests. The research was conducted at a proving ground under two conditions: driving at a constant speed and simulating urban bus operation with stops and door openings. The causes of heat loss in
Kozlov, AndreyTerenchenko, AlexeyStryapunin, Alexander
Accurate and realistic simulation of LiDAR data is critical for the development and validation of autonomous driving systems. However, existing simulation approaches often suffer from a significant sim-to-real gap due to oversimplified modelling of physical interactions and environmental factors. In this work, we present a physics-informed deep learning framework that bridges this gap by enhancing the realism of simulated LiDAR data using generative adversarial networks guided by domain-specific physical constraints for LiDAR intensity. Our method incorporates key physical factors such as range, surface material properties, angle of incidence, and environmental conditions along with their underlying physical relationships as constraints into the Cycle-Consistent GAN architecture, enabling it to learn realistic transformations from synthetic to real-world LiDAR intensity data without requiring paired samples. We demonstrate the effectiveness of our approach across multiple datasets
Anand, VivekYadav, SouravLimba, MohitPandey, GauravLohani, Bharat
In recent years, the automotive industry has been looking into alternatives for conventional vehicles to promote a sustainable transportation future having a lesser carbon footprint. Electric Vehicles (EV) are a promising choice as they produce zero tail pipe emissions. However, even with the demand for EVs increasing, the charging infrastructure is still a concern, which leads to range anxiety. This necessitates the judicious use of battery charge and reduce the energy wastage occurring at any point. In EVs, regenerative braking is an additional option which helps in recuperating the battery energy during vehicle deceleration. The amount of energy recuperated mainly depends on the current State of Charge (SoC) of the battery and the battery temperature. Typically, the amount of recuperable energy reduces as the current SoC moves closer to 100%. Once this limit is reached, the excess energy available for recuperation is discharged through the brake resistor/pads. This paper proposes a
Barik, MadhusmitaS, SethuramanAruljothi, Sathishkumar
This paper presents the virtual prototyping of traction motor in commercial EV to make an early prediction of the performance parameters of the machine without spending an enormous cost in building a physical structure. A 48/8 slot-pole configuration of IPMSM is used to demonstrate the electromagnetic and thermal co-simulation in ANSYS MotorCad. The core dimensions were determined using permanent-magnet field theory. From those, a two-dimensional finite-element (2D FEM) model of the interior permanent magnet (IPM) motor was simulated using Ansys Motor-CAD electromagnetic simulation tool. The influence of geometrical parameters on the performances of traction motor are evaluated based on FEM. The temperature distribution have been analyzed under steady and transient operating conditions. Alongside, the effects of saturation, demagnetization analysis, and the impact of PM flux linkage on inductances are also considered in this paper. At last, the simulation and analytical results of the
Murty, V. ShirishRathod, SagarkumarGandhi, NikitaTendulkar, SwatiKumar, KundanThakar, DhruvSethy, Amanraj
In pursuit of a distinct sporty interior sound character, the present study explores an innovative strategy for designing intake systems in passenger vehicles. While most existing literature primarily emphasizes exhaust system tuning for enhancing vehicle sound quality, the current work shifts the focus toward the intake system’s critical role in shaping the perceived acoustic signature within the vehicle cabin. In this research work, target cascading and settings were derived through a combination of benchmark and structured subjective evaluation study and aligning with literature review. Quantitative targets for intake orifice noise was defined to achieve the desired sporty character inside cabin. Intake orifice targets were engineered based on signature and sound quality parameter required at cabin. Systems were designed by using advanced NVH techniques, Specific identified acoustic orders were enhanced in the intake system to reinforce the required signature in acceleration as well
Sadekar, Umesh AudumbarTitave, UttamPatil, JitendraNaidu, Sudhakara
In last two decades, Farm customer expectation on cabin comfort has been increased multifold. To provide the best-in-class customer experience in terms of comfort without adding cost and weight is bigger challenge for all NVH Engineers. It is evident from literature survey that cabin tractors with better comfort is well accepted by customers in US and European Market. Apart from engine excitation, customer has become more sensitive to customer-actuated-accessory noises due to overall reduction in cabin noise in last 2 decades. This paper presents the study conducted on HVAC blower noise in 30HP cabin tractor. Tactile vibrations and cabin noise is not acceptable when AC is switched on due to low frequency modulating nature in frequency range of ~65Hz and 130Hz. The investigation is carried out systematically considering each component of Source-Path-Receiver model. HVAC blower unit as source is diagnosed in detail to understand root cause. Strong dominance of first order of blower been
K, SomasundaramChavan, Amit
Generally, in an electric sports utility vehicle with rear mounted powertrain the mass distribution is greater in the rear compared to front. This higher rear to front weight distribution results in oversteer behavior during high-speed cornering deteriorating vehicle handling & risking passenger safety. To compensate this inherent oversteer nature of such vehicles & produce understeer behavior, the steering rack is placed frontwards of the front wheel center for toe-out behavior due to lateral compliance during cornering. This compensation measure results in lower Ackermann percentage resulting in higher turning circle diameter deteriorating vehicle maneuverability. This paper proposes a design to obtain ideal understeer gradient with minimal turning circle diameter through utilization of split link technology with a McPherson Strut based suspension framework & frontwards placed steering rack. This suspension is utilized in our Mahindra Inglo platform. This paper elaborates on how
Nadkarni, Ameya RavindraMhatre, NitijPatnala, AvinashNAYAK, Bhargav
This paper focuses on the cabin sound quality refinement and the tactile vibration reduction during horn application in the electric vehicle. A loud cracking sound inside the cabin and higher accelerator pedal vibration are perceived while operating the horn. Sound diagnosis is carried out to find out the frequencies causing the cracking noise. Transfer path analysis is conducted to identify the nature of noise and the predominant path through which forces transfer. Based on finding from TPA, various recommendations are evaluated which reduced the noise to a certain extent. Operational Deflection Shape (ODS) is conducted on the horn mounting bracket and on the body to identify the component having higher deflection at the identified frequencies. Recommendations like DPDS improvement on the horn bracket and the body is assessed and the effect of each outcome is discussed. With all the recommendations proposed, the cabin noise levels are reduced by ~ 8 dB (A) and the accelerator pedal
S, Nataraja MoorthyRao, ManchiR, Ashwin sathyaS, THARAKESWARULURaghavendran, Prasath
The aim of this study is to develop a validated simulation method that accurately predicts vehicle behavior during a sudden loss of assist while cornering. The method also evaluates the steering effort required to return the vehicle to its intended path during failure scenarios, isolating the impact of uncertainties arising from driver performance. To illustrate the simulation methodology, the study involved testing various vehicles under conditions replicating sudden EPS assist loss during cornering. These tests captured the vehicle’s response, and the steering effort needed to correct its path. Different parameters affecting the vehicle behavior were studied and a validated method of simulation was developed.
Vishweshwara, ManasaVijay, VishnuNunes, RonaldoHubert, Robert
Engine noise mitigation is paramount in powertrain development for enhanced performance and occupant comfort. Identifying NVH problems at the prototype stage leads to costly and time-consuming redesigns and modifications, potentially delaying the product launch. NVH simulations facilitate identification of noise and vibration sources, informing design modifications prior to physical prototyping. Early detection and resolution of NVH problems through simulation can significantly shorten the overall development cycle and multiple physical prototypes and costly redesigns. During NVH simulations, predicting and optimizing valvetrain and timing drive noise necessitates transfer of bearing, valve spring, and contact forces to NVH simulation models. Traditional simulations, involved continuous force data export and NVH model evaluation for each design variant, pose efficiency challenges. In this paper, an approach for preliminary assessment of dB level reductions across design iterations is
Rai, AnkurDeshpande, Ajay MahadeoYadav, Rakesh
During vehicle launches in 1st gear, a lateral shake (undulation) and a pronounced metallic hitting noise were observed in the underbody. The noise was identified as the propeller shaft's second universal joint (UJ) yoke striking the fuel tank mounting bracket. Sensitivity to these issues varied with acceleration inputs: light pedal input during a normal 1st gear launch on a flat road resulted in minimal undulation, whereas wide open throttle (WOT) conditions in 1st gear produced significant lateral shake and intensified hitting noise. Further investigation revealed that the problem persists across all gears and occurs consistently during normal driving conditions, with continuous impact between the propeller shaft yoke and the fuel tank mounting bracket. Extensive experimental measurements at the vehicle level indicated that these issues were primarily caused by the center-mounted propeller shaft joint deviating from its central position and rotating eccentrically under torque. This
Sanjay, LS, ManickarajaKumar, SarveshKanagaraj, PothirajSenthil Raja, TB, Prem PrabhakarM, Kiran
Nowadays, vehicle enthusiasts often vary the driving patterns, from high-speed driving to off-roading. This leads to a continuous increase in demand for four-wheel drive (4WD) vehicles. A 4WD vehicle have better traction control with enhanced stability. The performance and reliability of 4WD vehicles at high speeds are significantly influenced by driveline stiffness and natural frequency, which are largely affected by the propeller shaft and transfer case. This study focuses on the design optimization of the transfer case and the propeller shafts to enhance the vehicle performance at high speeds. The analysis begins with a comprehensive study of factors affecting the power transfer path, transfer case stiffness, and critical frequency, including material properties, propeller shaft geometry, and different boundary conditions. Advanced computational methods are employed to model the dynamic behavior of the powertrain, identifying the natural frequency of the transfer case and propeller
Kumar, SarveshYadav, SahdevS, ManickarajaSanjay, LKanagaraj, PothirajJain, Saurabh KumarDeole, Subodh M
Mounting strategies for vehicles with panoramic sunroofs remains a challenge owing to its high complexity to balance cost, performance and assembly efficiency. Achieving efficient and reliable headliner mounting solutions is one of the conundrums where cost optimization must go together with uncompromised performance. Traditional methods like Dual Lock Fasteners (DLFs), have set high benchmarks for robustness but at the cost of increased manufacturing complexity and expense . In pursuit of a more economical and production-friendly alternative, various plastic clip designs were explored. However, these solutions posed significant challenges during validation due to the stringent requirements for mounting feasibility, tolerance management, and long-term durability This paper introduces a novel hybrid plastic-metal clip solution that addresses those challenges comprehensively. [2] The new design achieves precise tolerance control, ensuring reliable headliner installation under varying
D, GowthamKumarasamy, Raj GaneshShoeb, MohdChauhan, Aarti
Ambient light reflecting off internal components of the car, specifically the Head-Up Display (HUD), creates unwanted reflections on the Windshield. These reflections can obscure the driver's field of view, potentially compromising safety and reducing visual comfort. The extent of this obscuration is influenced by geometrical factors such as the angle of the HUD and the curvature of the Windshield, which need to be analyzed and managed. The primary motivation is to improve driver safety and visual comfort. This is driven by the need to address the negative impact of ambient light reflecting off Head-Up Displays (HUDs), which can impair visibility through the Windshield. There is a need for tools and methods to address this issue proactively during the vehicle design phase. This study employs a tool-based modeling method to trace the pathways of ambient light from its source, reflecting off the HUD, and onto the Windshield using a dimensional modeling tool. It focuses on: Geometrical
Muchchandi, VinodAkula, Satya JayanthMahindrakar, PramodG S, Sharath
Polymer compounds used in the manufacturing of automotive interiors are traditionally consist of polymer virgin material, elastomers, additives, pigments, fillers. These compounded polymers are prone to the emission of low molecular weight chemicals over a period of usage and exposure to the environment called volatile organic compounds (VOCs) and carbonyl compounds. These released VOCs and carbonyl compounds consist of chemicals like benzene, toluene, xylene, styrene, acetaldehyde, formaldehyde, acrolein etc. Short term or long-term exposure of these chemicals have adverse health effects like nausea, headache, vomiting, cancer, even death of personnel if found beyond the permissible limits. It has been observed that the majority of passenger have the above symptoms whenever travelled using passenger cars within few minutes of boarding and exchange the car cabin air. The study was planned to understand the reasons for the concerns and further resolution. This paper is focused on the
Shukla, Sandeep KumarBalaji, K VVaratharajan, Senthilkumaran
Potholes are a common road hazard that significantly compromise road safety. Water filled potholes can be particularly dangerous. These hidden hazards may cause vehicles to hydroplane [1], leading to a loss of control and potential collisions. At night or in low visibility conditions, such potholes can appear deceptively shallow, increasing the risk of severe suspension damage or tire blowouts. Additionally, deep water intrusion can affect critical components such as the exhaust system, air intake, or electrical wiring, potentially leading to engine stalling or short circuits. This research proposes a novel approach for identifying and determining the depth of potholes, especially those that are filled with water. By integrating YOLO, cutting edge computer vision methods like stereo imaging and Lidar. We hope to create a system that can precisely detect and evaluate potholes' severity, reducing the risks connected to these road hazards. A structured 2k factorial Design of Experiment
Ashok, DeekshaKumar, PradeepSingh, Amandeep
Sustainability and environmentally friendly business practices are becoming essential. Tyre industries are embracing the green initiatives to reduce its impact on the environment by exploring the eco-friendly strategies. Starting from the ethical raw material sourcing to a creative recycling technique, strategies are widely distributing in every step of tyre manufacturing to disposition. Each stage of a tyre’s life cycle viz. raw material procurement, manufacturing, transportation both upstream and downstream as well as during the end-of-life phases have an emission-saving potential. It is important to reduce emissions at every stage of tyre’s lifecycle. We have recently developed a Sustainable Tyre with 11% less GHG emission through sustainable raw material approach. Bio sourced or bio attributed raw materials like Styrene Butadiene Rubber (SBR), Polybutadiene Rubber (PBR), Rubber process oil (RPO) and Silica along with natural rubber (NR) had been used. Beside the raw materials from
Bhandary, TirthankarSingha Roy, SumitPaliwal, MukeshDasgupta, SaikatChattopadhyay, DipankarDas, MahuyaMukhopadhyay, Rabindra
Addressing climate issues is a key aspect of good global governance today. A key aspect of managing the threats caused to the environment around is to ensure a sustainable transportation system so that humans exist in peace with nature. According to sources, in 2020 alone, cars accounted for approximately 23% of global CO2 emissions. In addition, they also emit dangerous pollutants thus damaging the ecosystem. To keep pollutants in check there are emission level testing strategies in place in each country. However, we can do better for a sustainable future. On one hand, the huge volume of vehicles around the world makes it an excellent choice and source for a vast emission level dataset comprising of input features as well as the target variable representing the emission band of the vehicle. In addition to the big data available as mentioned above, major advancements in the machine learning algorithms are done today. The advent of algorithms such as Artificial Neural Networks (ANN) has
Sridhar, SriramAswani, Shelendra
There is an increasing trend of using polymeric materials in the vehicle interior compartment. While the polymers provide benefits in terms of flexibility in profiling, lighter weight and aesthetics but one of the challenges with the polymers is emission of volatile organic compounds (VOCs) during their usage and particularly at a temperature prevailing in the vehicle cabin. VOCs adversely impact the vehicle interior air quality and can pose a risk to occupants’ health. However, there is a lack of information on volatile organic compound (VOC) emissions from automotive interior materials. There are two types of methods, a whole vehicle chamber method (ISO 12219-1) and a bag method (ISO 12219-2) for evaluation of VOCs emissions from materials used in vehicle interior parts. ISO 12219-2 method describes quantitative testing of VOCs and semi-VOCs. This test method is quick and cost effective for analysis of materials for quick emission checks and can prove to be very effective in
PAtil, Yamini JitendraThipse, SukrutBawase, Moqtik
In India, fuel economy is one of the most critical factors influencing a customer's decision to own a passenger car. Beyond consumer preference, fuel consumption also plays a significant role in the nation's energy security. In line with this, the government promotes fuel-efficient vehicles and technologies through various regulations, policies, and mandates. Vehicle manufacturers, in response, focus on designing vehicles that align with both customer expectations and regulatory requirements. Fuel economy certification is typically based on standardized laboratory tests that simulate controlled environmental conditions, driving cycle (MIDC), vehicle load, and operation of electrical and electronic systems. However, actual on-road driving conditions by end user vary significantly due to factors such as traffic conditions, ambient temperature, air conditioning use, driving behavior and variable loading of the vehicle. With implementation of Bharat Stage VI, Real Driving Emission (RDE
Singh, Abhay PratapBathina, Revanth KumarTijare, Shantanu